932 research outputs found

    CCOs and the hidden magnetic field scenario

    Get PDF
    CCOs are X-ray sources lying close the center of supernova remnants, with inferred values of the surface magnetic fields significantly lower (less than about 1e11 G) than those of standard pulsars. In this paper, we revise the hidden magnetic field scenario, presenting the first 2D simulations of the submergence and reemergence of the magnetic field in the crust of a neutron star. A post-supernova accretion stage of about 1e-4-1e-3 solar masses over a vast region of the surface is required to bury the magnetic field into the inner crust. When accretion stops, the field reemerges on a typical timescale of 1-100 kyr, depending on the submergence conditions. After this stage, the surface magnetic field is restored close to its birth values. A possible observable consequence of the hidden magnetic field is the anisotropy of the surface temperature distribution, in agreement with observations of several of these sources. We conclude that the hidden magnetic field model is viable as alternative to the anti-magnetar scenario, and it could provide the missing link between CCOs and the other classes of isolated neutron stars.Comment: 7 pages, 7 figures, MNRA

    Spectral boundary conditions and solitonic solutions in a classical Sellmeier dielectric

    Full text link
    Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields ϕ\phi,ψ\psi respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behaviour for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field ψ\psi, with the aim of mimicking a third order nonlinearity in a nonlinear dielectric, we obtain solitonic solutions in the Hopfield model framework, whose classical behaviour is analyzed too.Comment: 12 pages, 1 figur

    Risk factors for central venous catheter-related infections in surgical and intensive care units. The Central Venous Catheter-Related Infections Study Group.

    Get PDF
    To identify avoidable risk factors for central venous catheter (CVC) infections in patients undergoing short-term catheterization

    Population synthesis of isolated Neutron Stars with magneto--rotational evolution

    Get PDF
    We revisit the population synthesis of isolated radio-pulsars incorporating recent advances on the evolution of the magnetic field and the angle between the magnetic and rotational axes from new simulations of the magneto-thermal evolution and magnetosphere models, respectively. An interesting novelty in our approach is that we do not assume the existence of a death line. We discuss regions in parameter space that are more consistent with the observational data. In particular, we find that any broad distribution of birth spin periods with P00.5P_0\lesssim 0.5 s can fit the data, and that if the alignment angle is allowed to vary consistently with the torque model, realistic magnetospheric models are favoured compared to models with classical magneto-dipolar radiation losses. Assuming that the initial magnetic field is given by a lognormal distribution, our optimal model has mean strength logB0[G]13.013.2\langle\log B_0{\rm [G]}\rangle \approx 13.0-13.2 with width σ(logB0)=0.60.7\sigma (\log B_0) = 0.6-0.7. However, there are strong correlations between parameters. This degeneracy in the parameter space can be broken by an independent estimate of the pulsar birth rate or by future studies correlating this information with the population in other observational bands (X-rays and γ\gamma-rays).Comment: 10 pages, 9 figures, submitted and accepted to MNRAS, comments welcom

    Triggering magnetar outbursts in 3D force-free simulations

    Get PDF
    In this letter, we present the first 3D force-free general relativity simulations of the magnetosphere dynamics related to the magnetar outburst/flare phenomenology. Starting from an initial dipole configuration, we adiabatically increase the helicity by twisting the footprints of a spot on the stellar surface and follow the succession of quasi-equilibrium states until a critical twist is reached. Twisting beyond that point triggers instabilities that results in the rapid expansion of magnetic field lines, followed by reconnection, as observed in previous axi-symmetric simulations. If the injection of magnetic helicity goes on, the process is recurrent, periodically releasing a similar amount of energy, of the order of a few % of the total magnetic energy. From our current distribution, we estimate the local temperature assuming that dissipation occurs mainly in the highly resistive outermost layer of the neutron star. We find that the temperature smoothly increases with injected twist, being larger for spots located in the tropical regions than in polar regions, and rather independent of their sizes. After the injection of helicity ceases, the magnetosphere relaxes to a new stable state, in which the persistent currents maintain the footprints area slightly hotter than before the onset of the instability.Comment: 6 pages, 5 figure

    Spectral features in isolated neutron stars induced by inhomogeneous surface temperatures

    Get PDF
    The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious 'spectral line' is required at a high significance level in order to obtain statistically acceptable fits, with central energy and equivalent width similar to the values typically observed. We also perform a fit to a specific object, RX J0806.4-4123, finding several surface temperature distributions able to model the observed spectrum. The explored effect is unlikely to work in all sources with detected lines, but in some cases it can indeed be responsible for the appearance of such lines. Our results enforce the idea that surface temperature anisotropy can be an important factor that should be considered and explored also in combination with more sophisticated emission models like atmospheres.Comment: 11 pages, 7 figures; accepted for publication in MNRA

    Population Synthesis of Isolated Neutron Stars with magneto-rotational evolution II: from radio-pulsars to magnetars

    Get PDF
    Population synthesis studies constitute a powerful method to reconstruct the birth distribution of periods and magnetic fields of the pulsar population. When this method is applied to populations in different wavelengths, it can break the degeneracy in the inferred properties of initial distributions that arises from single-band studies. In this context, we extend previous works to include XX-ray thermal emitting pulsars within the same evolutionary model as radio-pulsars. We find that the cumulative distribution of the number of X-ray pulsars can be well reproduced by several models that, simultaneously, reproduce the characteristics of the radio-pulsar distribution. However, even considering the most favourable magneto-thermal evolution models with fast field decay, log-normal distributions of the initial magnetic field over-predict the number of visible sources with periods longer than 12 s. We then show that the problem can be solved with different distributions of magnetic field, such as a truncated log-normal distribution, or a binormal distribution with two distinct populations. We use the observational lack of isolated NSs with spin periods P>12 s to establish an upper limit to the fraction of magnetars born with B > 10^{15} G (less than 1\%). As future detections keep increasing the magnetar and high-B pulsar statistics, our approach can be used to establish a severe constraint on the maximum magnetic field at birth of NSs.Comment: 12 pages, 11 figures, 5 table

    Pulsar timing irregularities and the imprint of magnetic field evolution

    Get PDF
    (Abridged) The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index, which is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. By performing axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs, we find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n~3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n<3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n>3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of high absolute value and both positive and negative signs. Models with strong (1e14 G) multipolar or toroidal components, even with a weak (~1e12 G) dipolar field are consistent with the observed trend of the timing properties.Comment: 7 pages, 5 figures, accepted for publication in Astronomy & Astrophysics (submitted July 24, 2012
    corecore