253 research outputs found

    Ressenyes

    Get PDF
    Obra ressenyada: José ORTEGA VALCÁRCEL, Los horizontes de la geografía. Teoría de la geografía. Barcelona: Ariel, 2000

    Incision and width changes caused by dam removal. Experiments and data analysis

    Get PDF
    River morphodynamics and sediment transportRiver morphology and morphodynamic

    Segmentation in 2D and 3D image using Tissue-Like P System

    Get PDF
    Membrane Computing is a biologically inspired computational model. Its devices are called P systems and they perform computations by applying a finite set of rules in a synchronous, maximally parallel way. In this paper, we open a new research line: P systems are used in Computational Topology within the context of the Digital Image. We choose for this a variant of P systems, called tissue-like P systems, to obtain in a general maximally parallel manner the segmentation of 2D and 3D images in a constant number of steps. Finally, we use a software called Tissue Simulator to check these systems with some examples

    Serializing the Parallelism in Parallel Communicating Pushdown Automata Systems

    Full text link
    We consider parallel communicating pushdown automata systems (PCPA) and define a property called known communication for it. We use this property to prove that the power of a variant of PCPA, called returning centralized parallel communicating pushdown automata (RCPCPA), is equivalent to that of multi-head pushdown automata. The above result presents a new sub-class of returning parallel communicating pushdown automata systems (RPCPA) called simple-RPCPA and we show that it can be written as a finite intersection of multi-head pushdown automata systems

    Limits of the power of Tissue P systems with cell division

    Get PDF
    Tissue P systems generalize the membrane structure tree usual in original models of P systems to an arbitrary graph. Basic opera- tions in these systems are communication rules, enriched in some variants with cell division or cell separation. Several variants of tissue P systems were recently studied, together with the concept of uniform families of these systems. Their computational power was shown to range between P and NP ? co-NP , thus characterizing some interesting borderlines between tractability and intractability. In this paper we show that com- putational power of these uniform families in polynomial time is limited by the class PSPACE . This class characterizes the power of many clas- sical parallel computing model

    PNEPs, NEPs for context free parsing: Application to natural language processing

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02478-8_59Proceedings of 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, Salamanca, Spain.This work tests the suitability of NEPs to parse languages. We propose PNEP, a simple extension to NEP, and a procedure to translate a grammar into a PNEP that recognizes the same language. These parsers based on NEPs do not impose any additional constrain to the structure of the grammar, which can contain all kinds of recursive, lambda or ambiguous rules. This flexibility makes this procedure specially suited for Natural Languge Processing (NLP). In a first proof with a simplified English grammar, we got a performance (a linear time complexity) similar to that of the most popular syntactic parsers in the NLP area (Early and its derivatives). All the possible derivations for ambiguous grammars were generatedThis work was partially supported by MEC, project TIN2008-02081/TIN and by DGUI CAM/UAM, project CCG08-UAM/TIC-4425

    A linear-time tissue P system based solution for the 3-coloring problem

    Get PDF
    In the literature, several examples of the efficiency of cell-like P systems regarding the solution of NPcomplete problems in polynomial time can be found (obviously, trading space for time). Recently, different new models of tissue-like P systems have received important attention from the scientific community. In this paper we present a linear-time solution to an NP-complete problem from graph theory, the 3–coloring problem, and we discuss the suitability of tissue-like P systems as a framework to address the efficient solution to intractable problems.Ministerio de Educación y Ciencia TIN2005-09345-C04-01Junta de Andalucía TIC-58

    Qualitative modelling and analysis of regulations in multi-cellular systems using Petri nets and topological collections

    Get PDF
    In this paper, we aim at modelling and analyzing the regulation processes in multi-cellular biological systems, in particular tissues. The modelling framework is based on interconnected logical regulatory networks a la Rene Thomas equipped with information about their spatial relationships. The semantics of such models is expressed through colored Petri nets to implement regulation rules, combined with topological collections to implement the spatial information. Some constraints are put on the the representation of spatial information in order to preserve the possibility of an enumerative and exhaustive state space exploration. This paper presents the modelling framework, its semantics, as well as a prototype implementation that allowed preliminary experimentation on some applications.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Die Parteien entscheiden längst nicht mehr

    Get PDF
    Am 8. November wird in den USA nicht nur ein neuer Präsident, sondern auch ein neuer Kongress gewählt. Eine erneute Blockadehaltung könnte das Land zum Stillstand bringen und den sozialen Frieden gefährden
    corecore