24 research outputs found
Soil quality, properties, and functions in life cycle assessment: an evaluation of models
Soils provide essential ecosystem services for supporting both human and ecosystem needs and has been under pressures resulting from the intensification and expansion of human activities. In the last 15 years, substantial efforts have been made to quantify the impacts on soils derived from production systems and their related supply chains. In this study, a systematic, qualitative evaluation of up-to-date models connecting land occupation and land transformation to soil impact indicators (e.g., soil properties,
functions, and threats) is performed. The focus is on models that may be applied for assessing supply
chains, namely in the context of life cycle assessment (LCA). A range of eleven soil-related models was
selected and evaluated against different criteria, including scientific soundness, stakeholders' acceptance, reproducibility, and the applicability of models from the perspective of LCA practitioners. Additionally, this study proposes a new land use cause-effect chain to qualify the impacts of land use on soils. None of the models is fulfilling all the criteria and includes comprehensively the cause-effect impact pathways. Notably, trade-offs were most frequent between the relevance of the modeled impact processes and the models' applicability. On the one hand, models proposing multi-indicators cover several drivers of impacts and have a broader scope. On the other hand, several models just focus on one driver of impact, but may provide more relevant impact characterization. Our results provide common ground for the development and identification of models that provide a comprehensive and robust assessment of land use change and land use impacts on soils. Indeed, to ensure both a comprehensive and relevant characterization of impacts, the study identifies several research needs for further models' developments, namely: 1) adopting a common land use cause-effect chain and land use classification; 2) accounting for different land management and land use intensities; 3) expanding the inventory data beyond the accounting of the area related to a certain land use; 4) assessing the added value of multi-indicators compared to single indicators, including the reduction of possible redundancies in the impact evaluation; 5) improving consistency from midpoint to endpoint characterization, especially the link with
biodiversity; 6) guiding the calculation of normalization factors; and 7) assessing systematically model's
uncertaintyinfo:eu-repo/semantics/publishedVersio
Assessment of the methodology for establishing the EU list of critical raw materials : background report
This report presents the results of work carried out by the Directorate General (DG) Joint Research Centre (JRC) of the European Commission (EC), in close cooperation with Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (GROW), in the context of the revision of the EC methodology that was used to identify the list of critical raw materials (CRMs) for the EU in 2011 and 2014 (EC 2011, 2014). As a background report, it complements the corresponding Guidelines Document, which contains the "ready-to-apply" methodology for updating the list of CRMs in 2017. This background report highlights the needs for updating the EC criticality methodology, the analysis and the proposals for improvement with related examples, discussion and justifications. However, a few initial remarks are necessary to clarify the context, the objectives of the revision and the approach. As the in-house scientific service of the EC, DG JRC was asked to provide scientific advice to DG GROW in order to assess the current methodology, identify aspects that have to be adapted to better address the needs and expectations of the list of CRMs and ultimately propose an improved and integrated methodology. This work was conducted closely in consultation with the adhoc working group on CRMs, who participated in regular discussions and provided informed expert feedback. The analysis and subsequent revision started from the assumption that the methodology used for the 2011 and 2014 CRMs lists proved to be reliable and robust and, therefore, the JRC mandate was focused on fine-tuning and/or targeted incremental methodological improvements. An in depth re-discussion of fundamentals of criticality assessment and/or major changes to the EC methodology were not within the scope of this work. High priority was given to ensure good comparability with the criticality exercises of 2011 and 2014. The existing methodology was therefore retained, except for specific aspects for which there were policy and/or stakeholder needs on the one hand, or strong scientific reasons for refinement of the methodology on the other. This was partially facilitated through intensive dialogue with DG GROW, the CRM adhoc working group, other key EU and extra-EU stakeholders
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Concentrations of potentially toxic elements and soil environmental quality evaluation of a typical Prosecco vineyard of the Veneto region (NE Italy)
Purpose The aim of this work was to assess the concentrations of potentially toxic elements and to evaluate the soil quality of a typical Prosecco Denomination of Controlled and Guaranteed Origin vineyard of the Veneto region, NE Italy. Materials and methods Soil samples and leaves of Taraxacum officinale and Vitis vinifera were collected during spring–summer 2014. Element determination (Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, V, and Zn) were performed with ICP-OES after microwave digestion of samples. Soil quality was assessed via the biological soil quality (BSQ-ar) index. Lipid peroxidation test was performed to evaluate the vegetation oxidative stress, based on malondialdehyde (MDA) content via spectrophotometer. Results and discussion High concentrations of Al,Mg, and P were identified in soil, while high contents of Al, Cu, Fe, and Zn were found in V. vinifera leaves. The high concentrations in soil are probably due to agricultural activities, whereas those in leaves are probably due to atmospheric deposition and repeated use of foliar sprays in viticulture. The bioconcentration factor showed an effective transport of Cu, P, and Zn, from soil to leaf. The BSQ-ar values registered were similar to those obtained in preserved soils; hence, the biological class (VI) of these soils is high. The MDA content in T. officinale and V. vinifera leaves was below the reference value for T. officinale (2.9 ± 0.2 μM), suggesting that the metal content did not stress the vegetation in the investigated site. Conclusions The MDA value for V. vinifera (1.1 ± 0.7 μM) could be adopted as another control value for soil quality, which in our case is of Bgood quality.^ Moreover, our results suggest that high concentrations of elements detected in the analyzed samples do not influence negatively the quality of soil, but a better agronomic management could improve soil quality in the studied area
Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease
Review of the Impacts on Soils of Land-Use Changes Induced by Non-food Biomass Production
International audienceOver the past decade, the exponential growth in the production of biomass for energy use has raised concerns as to the environmental impacts of this type of land use, as well as the potential land-use changes (LUC) associated with an extension of agricultural land areas. Determining the environmental impacts of an expanding bioenergy sector requires reconstructing the chains of cause and effect from the determinants of land-use change (both direct and indirect) and land-use practices through to the impacts of those practices. Conducting an exhaustive literature review from 1975 to 2014, we identified 241 articles relevant to this causal chain, thus enabling an analysis of the environmental impacts of LUC for bioenergy. This chapter presents the results of a detailed literature analysis and literature review of the 52 articles within this corpus specifically addressing impacts on soils. The variation in soil organic carbon (SOC) is the most commonly used impact indicator, followed by soil loss to erosion and, to a lesser extent, the potential for environmental acidification as determined by life-cycle assessments. Background and transitional SOC levels during LUC affect the predictive value of estimated final SOC variations but are not generally accounted for in default static stock-difference approaches. Perennial crops tend to be better at maintaining or even improving SOC levels, but results vary according to pedoclimatic and agronomic conditions. The mechanisms involved notably include protection of the soil surface with a dense perennial cover and the limitation of tillage operations, especially deep plowing; accumulation of organic matter and SOC linked to biomass production, especially belowground production of rhizomes and deep, dense root systems; associated reductions in nutrient loss via runoff and erosion. Nevertheless, additional research is needed to improve our understanding of and ability to model the full range of processes underlying soil quality and LUC impacts on soil quality