6 research outputs found

    TET-mediated DNA hydroxymethylation is negatively influenced by the PARP-dependent PARylation

    Get PDF
    Background Poly(ADP-ribosyl)ation (PARylation), a posttranslational modification introduced by PARP-1 and PARP-2, has first been implicated in DNA demethylation due to its role in base excision repair. Recent evidence indicates a direct influence of PARP-dependent PARylation on TET enzymes which catalyse hydroxymethylation of DNA—the first step in DNA demethylation. However, the exact nature of influence that PARylation exerts on TET activity is still ambiguous. In our recent study, we have observed a negative influence of PARP-1 on local TET-mediated DNA demethylation of a single gene and in this study, we further explore PARP–TET interplay. Results Expanding on our previous work, we show that both TET1 and TET2 can be in vitro PARylated by PARP-1 and PARP-2 enzymes and that TET1 PARylation negatively affects the TET1 catalytic activity in vitro. Furthermore, we show that PARylation inhibits TET-mediated DNA demethylation at the global genome level in cellulo. Conclusions According to our findings, PARP inhibition can positively influence TET activity and therefore affect global levels of DNA methylation and hydroxymethylation. This gives a strong rationale for future examination of PARP inhibitors' potential use in the therapy of cancers characterised by loss of 5-hydroxymethylcytosine

    Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo

    Get PDF
    The intention was to evaluate the possible in vivo genotoxic potential in different cell-types, of a methanol extract obtained from the plant stem of Cotinus coggygria Scop., using the sex-linked recessive lethal (or SLRL) test and alkaline comet assay. The SLRL test, revealed the genotoxic effect of this extract in postmeiotic and premeiotic germ-cell lines. The comet assay was carried out on rat liver and bone marrow at 24 and 72 h after intraperitoneal administration. For genotoxic evaluation, three concentrations of the extract were tested, viz., 500, 1000 and 2000 mg/kg body weight (bw), based on the solubility limit of the extract in saline. Comet tail moment and total scores in the group treated with 500 mg/kg bw, 24 and 72 h after treatment, were not significantly different from the control group, whereas in the groups of animals, under the same conditions, but with 1000 and 2000 mg/kg bw of the extract, scores were statistically so. A slight decrease in the comet score and tail moment observed in all the doses in the 72 h treatment, gave to understand that DNA damage induced by Cotinus coggygria extract decreased with time. The results of both tests revealed the genotoxic effect of Cotinus coggygria under our experimental conditions

    PARP-1 and YY1 Are Important Novel Regulators of CXCL12 Gene Transcription in Rat Pancreatic Beta Cells

    Get PDF
    Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12 transcription

    New Insights into the Epigenetic Activities of Natural Compounds

    Get PDF
    International audienceHistone deacetylases (HDACs) are a family of enzymes found in bacteria, fungi, plants, and animals that profoundly affect cellular function by catalyzing the removal of acetyl groups from -N-acetylated lysine residues of various protein substrates including histones, transcription factors, alpha-tubulin, and nuclear importers. Although the precise roles of HDAC isoforms in cellular function are not yet completely understood, inhibition of HDAC activity has emerged as a promising approach for reversing the aberrant epigenetic states associated with cancer and other chronic diseases. Potent new isoform-selective HDAC inhibitors would therefore help expand our understanding of the HDAC enzymes and represent attractive lead compounds for drug design, especially if combined with high-resolution structural analyses of such inhibitors to shed light on the three-dimensional pharmacophoric features necessary for the future design of more potent and selective compounds. Here we present structural and functional analyses of a series of beta-amino-acid-containing HDAC inhibitors inspired by cyclic tetrapeptide natural products. To survey a diverse ensemble of pharmacophoric configurations, we systematically varied the position of the beta-amino acid, amino acid chirality, functionalization of the Zn(2+)-coordinating amino acid side chain, and alkylation of the backbone amide nitrogen atoms around the macrocycle. In many cases, the compounds were a single conformation in solution and exhibited potent activities against a number of HDAC isoforms as well as effective antiproliferative and cytotoxic activities against human tumor cells. High-resolution NMR solution structures were determined for a selection of the inhibitors, providing a useful means of correlating detailed structural information with potency. The structure-based approach described here is expected to furnish valuable insights toward the future design of more selective HDAC inhibitors

    Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds

    No full text
    corecore