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Abstract

Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of
diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12
expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into
the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and
transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding
affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin
immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a
reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and
YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on
Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in
Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us
to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited
less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by
Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly
expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12
expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates
corresponding effects in the natural context where the functional interplay of these proteins could finely balance Cxcl12
transcription.
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Introduction

Type 1 diabetes (T1D) is a multifactorial disease believed to be

of immunological origin, precipitated by infections and environ-

mental factors in genetically predisposed individuals. The

hallmark of T1D is selective death of pancreatic insulin-

producing beta cells resulting from attack by mononuclear cells.

The maintenance of an appropriate number of pancreatic beta

cells remains a viable interventive measure in diabetes. Detection

of novel beta cell growth factors will provide crucial information

for strategies that could compensate for depletion and defects of

beta cell functioning.

The chemokine (C-X-C motif) ligand 12 (CXCL12) or stromal

cell-derived factor-1 (SDF-1) belongs to the CXC group of

chemokines. CXCL12 was discovered as a pre-B cell growth-

stimulating factor [1,2]. The CXCL12 is a ligand of two

transmembrane receptors, chemokine (C-X-C motif) receptor 4

(CXCR4) and chemokine (C-X-C motif) receptor 7 (CXCR7)

[3,4]. An antidiabetogenic potential of CXCL12 was recently

revealed in vitro and in vivo. Transgenic mice that overexpress

CXCL12 in their beta cells are resistant to apoptosis and diabetes.

It was shown that CXCL12 stimulates pancreatic beta cell survival

by preventing apoptosis via activation of the prosurvival kinase Akt

and the resulting upregulation of antiapoptotic protein Bcl-2 and

phosphorylation of the proapoptotic protein Bad [5]. Also, beta

cell injury induces CXCL12 expression, and the secreted

CXCL12 causes the dedifferentiation of adjacent alpha cells into

pro-alpha cells. This is an initial step in transdifferentiation of

alpha to beta cells [6,7]. The process of transdifferentiation in the

pancreas is of particular interest, since T1D results from an

insufficient number of functional beta cells. Furthermore, the

human gene for CXCL12 is located on chromosome 10q11.1,

near to the T1D susceptibility locus IDDM10, indicating that

CXCL12 gene variants could contribute to diabetes development.

Analysis of single nucleotide polymorphisms in the CXCL12 gene

revealed that the CXCL12-39A variant is associated with the early

onset of T1D in some populations [8,9].

Since, CXCL12 is proven to be important in pancreatic islet

survival, we aimed to advance knowledge concerning the

regulation of rat CXCL12 gene (Cxcl12) transcription, and for

the first time we focused on two transcription factors; the
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poly(ADP-ribose) polymerase-1 (PARP-1) and the ubiquitous

transcription factor Yin Yang 1 (YY1).

PARP-1 is a multifunctional nuclear enzyme involved in the

regulation of a variety of nuclear processes, including cell death

[10], replication and differentiation [11], telomere activity [12],

energy balance for cellular processes [13] and transcription [14].

Aside from binding to DNA breaks [15], PARP-1 binds to specific

DNA sequences, thereby regulating transcription of its own

[16,17] and other genes such as Mcat1 [18], Pax-6 [19], MHC II

[20], Cxcl1 [21], Reg [22] and Bcl-6 [23]. The enzymatic activation

of PARP-1 implies the transfer of ADP-ribose moieties to acceptor

proteins in the nucleus (heteromodification), including itself

(automodification) [24]. With regard to diabetes, PARP-1

deficiency provides protection from experimentally induced

diabetes. Namely, PARP-1 knockout (PARP2/2) mice were

shown to be resistant to streptozotocin (STZ) -induced diabetes,

restoring normal blood glucose and pancreatic islet structure [25].

Moreover, PARP-1 inhibition protects against autoimmune beta

cell destruction in NOD mice via induction of apoptosis of islet-

infiltrating leukocytes [26].YY1 is a ubiquitous zinc finger

transcription factor that can initiate, activate or repress transcrip-

tion [27]. When the DNA binding motif of YY1 occurs

downstream from the transcription start site, it often overlaps

with the Kozak sequence [28]. YY1 is originally identified as a

DNA-binding nuclear matrix protein with the ability to bind DNA

sequences possessing an unwinding propensity [29,30]. Subse-

quent transient poly(ADP-ribosyl)ation of YY1 reduces its DNA

binding affinity [31]. Functional relations between YY1 and

PARP-1 are also relevant in cases where enzymatic PARP-1

activity modulates transcription [32]. YY1 is involved in the

regulation of several genes responsible for cellular functions

governing cellular stability [33]. YY1 participates in the regulation

of Parp-1 [34], the chemokine receptor Cxcr4 [35] and the

antiinflamatory cytokine IL-4 [36] that protects against diabetes

development [37].

The aim of our study was to investigate the molecular

mechanisms that regulate gene transcription of CXCL12, a

potential beta cell growth factor. Our results revealed two novel

regulators of the CXCL12 gene and elucidated their influence on

Cxcl12 transcription. Furthermore, our investigation clarified

Cxcl12 promoter regulation in the basal state and during STZ-

induced pancreatic beta cell injury.

Materials and Methods

Bioinformatics
The rat Cxcl12 promoter sequence was predicted by Genomatix

Software GmbH (Munich, Germany). Putative binding sites for

YY1 and Sp1 were identified by ALGGEN-PROMO (http://

alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.

cgi?dirDB = TF_8.3) and MatInspector (www.genomatix.de).

Cell Culture and Treatment
The rat pancreatic insulinoma cell line (Rin-5F) (ATCC-CRL-

2058) and a generated Rin-5F with a stably integrated human

gene for CXCL12 (clone #1) were cultivated in RPMI medium

supplemented with 10% FBS and penicillin/streptomycin.

NIH3T3 mouse embryonic fibroblasts (PARP-1+/+) (ATCC-

CRL-1658) and PARP-1 knock-out (PARP-12/2) mouse embry-

onic fibroblasts were cultivated in DMEM medium supplemented

with 10% fetal calf serum and penicillin/streptomycin. Cell

culture reagents were obtained from PAA Laboratories GmbH.

Rin-5F wt and clone #1 cells were treated with 5 mM STZ

(Sigma), established to correspond to EC50. In some experiments,

wt cells were pretreated with increasing 3-aminobenzamidine

(3AB) (Sigma) concentrations, followed by 5 mM STZ for 24 h.

Cell Viability Assay
Rin-5F wt and clone #1 cell viability was estimated by the 3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

(MTT) viability assay. Cells were cultured in a 96-well plate and

treated with increasing concentrations of STZ (0.1–15 mM) for

24 h. After removing the medium, 200 ml of MTT (Sigma,

M5655) at a concentration of 0.5 mg/ml in RPMI was added to

each well. Cells were incubated for 2 h in the dark and the

resultant formazan crystals were dissolved in dimethyl sulfoxide.

The absorbance was measured at 570 nm. Cell viability was

expressed in percentages after comparison with control cells that

were assumed to be 100% viable.

Comet Assay
The levels of DNA damage after increasing times of STZ

treatment were estimated by the alkaline Comet assay according to

Singh et al. [38]. Rin-5F wt cells were grown in 6-well plates and

exposed to 5 mM STZ (Sigma) for increasing times (0.5, 1, 3 and

6 h). Control and STZ-treated cells were collected in PBS. The

collected cells (10 ml) were mixed with low-melting agarose

(0.75%) and applied to a microscope slide. Cells were lysed for

2 h at 4uC in lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM

Tris, pH 10, 1% Triton X-100). After lysis, microscope slides were

incubated for 30 min at 4uC in electrophoresis buffer (300 mM

NaOH, 1 mM EDTA, pH 13.0) in order to denature DNA.

Damaged DNA fragments were separated at 10 V for 30 min at

4uC. The slides were washed in neutralization buffer (0.4 M Tris–

HCl, pH 7.4) and stained with SYBR Green I (1:10,000 dilution;

SYBR; Sigma-Aldrich). Images were analysed with TriTekCo-

metScoree Freeware version 1.5 (http://www.AutoComet.com).

Preparation of Protein Fractions
Cell protein fractions were prepared with the ProteoJET

Mammalian Cell Lysis Reagent and ProteoJET Cytoplasmic and

Nuclear Protein Extraction Kit (Fermentas).

Electrophoretic Mobility-shift Assay (EMSA)
Rat genomic DNA was extracted from the RIN-5F wt cell line.

The Cxcl12 promoter (739 bp) was amplified using biotinylated

PCR primers: upstream 5‘-biotin-CAGCACAGCCCTACGT-

TAGA-39 and downstream 5‘-biotin-ACAGAGCTGC-

GAGCCTTGCC-39. The PCR products were purified using

QIAquick Gel Extraction Kit (Qiagen). EMSA was performed in a

binding buffer containing 6.25 mM MgCl2, 10% glycerol, 2.5 mM

EDTA, 2.5 mM DTT, 250 mM NaCl and 50 mM Tris-HCl

(pH 7.5). The nuclear lysate (20 mg) was incubated with binding

buffer for 15 min at room temperature. Subsequently, 100 ng of

biotinylated DNA fragments were added and incubation was

carried out at 37uC for 30 min. Poly(dIdC) (1 mg) was used as a

competitor DNA in each binding reaction. For supershift

experiments, 1 mg of anti-PARP antibodies (H-250-Santa Cruz;

R&D and C2-10-ALEXIS Biochemicals), and 1 mg of anti-YY1

antibody (H-414-Santa Cruz) were added to the protein mixture

and incubated at 37uC for 30 min. EMSA was also performed

using recombinant PARP-1. The binding reaction containing the

binding buffer, 100 ng of biotinylated Cxcl12 promoter, 100 ng of

recombinant PARP-1 (ALEXIS Biochemicals) and 1 mg of

poly(dIdC) was incubated for 30 min at 37uC. Reaction mixtures

were separated by non-denaturing electrophoresis on a 1%

agarose gel at 80 V for 2–3 h in 16Tris–borate–EDTA buffer
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(16TBE) at room temperature. The biotinylated DNA ends

conjugated with streptavidin-alkaline phosphatase prevent PARP-

1 binding to the DNA ends and allows post-EMSA DNA

visualization by the DuoLux chemiluminescent substrate (Ultra-

SNAP detection system; Vector Laboratories) according to the

manufacturer’s instruction.

Chromatin Immunoprecipitation (ChIP)
Rin-5F wt cells were treated with 5 mM STZ for 0.5 and 6 h.

Control and STZ-treated cells were fixed with 1% formaldehyde

(Lach-ner) for 10 min at room temperature, according to the

ChIP-IT Express protocol (ActiveMotif). Chromatin was sheared

on ice with 20 pulses. Each pulse consisted of sonication for 20 s,

followed by a 30 s rest on ice. Sheared chromatin yielded a 200–

500 bp smear. Immunoprecipitation was performed using 3 mg of

the following antibodies: two different anti-PARP-1 antibodies

(Roche and H-250-Santa Cruz), anti-YY1 antibody; (H-414-Santa

Cruz), and anti-Sp1 antibody (E-3-Santa Cruz). The cross-link was

reversed by heating the samples in Reverse Cross-linking Buffer at

95uC for 15 min, followed by incubation with 1 mg of Proteinase

K for 1 h at 37uC. After adding Proteinase K Stop Solution, DNA

samples were amplified with specific primers flanking different

fragments within the Cxcl12 promoter. Primer compositions were:

upstream 59-CAGCACAGCCCTACGTTAGA-39 and down-

stream 59-AGAGGCGAAACTGTGTTCCA-39 for fragment 1;

upstream 59-TGGAACACAGTTTCGCCTCT-39 and down-

stream 59-AAGGGGCGTGTCTGAAGTGT-39 for fragment 2;

upstream 59-ACACTTCAGACACGCCCCTT-39 and down-

stream 59-ACAGAGCTGCGAGCCTTGCC-39 for fragment 3.

Immunoblot Analysis
Samples (20 mg) of proteins separated by SDS-PAGE (12%

acrylamide gel) were electroblotted onto a polyvinylidene

difluoride (PVDF) membrane. The membranes were blocked for

1 h at room temperature with 5% non-fat dry milk in blotto base

buffer (0.1% Tween 20, 20 mM Tris–HCl pH 7.6, 137 mM

NaCl). Immunoblot analysis was performed using the following

antibodies: anti- PARP-1 (H-250-Santa Cruz), anti-YY1 (H-414-

Santa Cruz), anti-SDF-1 (FL-93-Santa Cruz), anti-caspase-3 (H-

277-Santa Cruz), anti-PAR (H10-ALEXIS Biochemicals) and

anti-b-actin (Abcam, ab8227). Blots were probed by horseradish

peroxidase-conjugated secondary antibody. Staining was per-

formed by the chemiluminescent technique according to the

manufacturer’s instructions (Amersham Pharmacia Biotech).

Reporter Gene Constructs
Rat genomic DNA extracted from Rin-5F wt cells was PCR-

amplified following standard procedures. To amplify the Cxcl12

promoter we used the following primers: upstream 59-GGTCGA-

TACTAGTTTGTAAAGACACCAATGACC-39 and down-

stream 59-CCTAAGCCTCGAGTGGGCGG-

GAGGGCGCGCCGGAGGCT-39. The amplified Cxcl12

promoter was cloned in the pMDICluc construct using restriction

enzymes SpeI and XhoI. In the generated pCXCL12luc construct,

the Cxcl12 promoter drives the firefly luciferase gene. The

ampicillin gene served as a selection marker. The resulting

pCXCL12luc construct was sequenced in both directions using the

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosys-

tems).

Transient Transfection
The day before transfection, cells were plated in 24-well plates,

being 70% confluent after 24 h. Rin-5F (wt and clone #1) and

NIH3T3 (PARP-1+/+ and PARP-12/2) cells were transfected with

pCXCL12luc and pMDICluc constructs. pMDICluc is a control

construct in which the firefly luciferase gene is under the control of

the CMV promoter. PARP-1+/+ and PARP2/2 fibroblasts were

cotransfected with both pCXCL12luc and the PARP-1 expression

construct pECV PARP. PARP-1+/+ fibroblasts were cotransfected

with both pCXCL12luc and the pcDNA3.1FLAGYY1 plasmid

containing the FLAG-tagged human YY1 coding sequence. In

each transfection reaction the Renilla luciferase-construct, served as

a normalizing transfection control for firefly luciferase. Transfec-

tion experiments were performed using LipofectamineTM 2000

(Invitrogen), according to the manufacturer’s instructions. Plasmid

DNA (0.5 mg) and the Renilla luciferase-construct (0.065 mg) were

diluted in cell culture medium. LipofectamineTM 2000 (2 ml) was

dissolved in the medium and incubated at room temperature for

5 min. The diluted DNA and cationic lipid were combined and

incubated for 20 min. Cell culture medium (without antibiotics)

supplemented with the plasmid–lipid complexes was added to each

well. After 5 h incubation, the medium was replaced by complete

medium and incubation was continued for 24 h. The ratio of the

luciferase activity units obtained for each cell line transfected with

pCXCL12luc and pMDICluc was normalized by dividing the

firefly signal by the Renilla signal. The activity of the Cxcl12

promoter was expressed relatively to activity of control CMV

promoter.

Dual-luciferase Reporter Assay System
Luciferase activity was measured with the Dual-LuciferaseH

Reporter Assay System according to the manufacturer’s recom-

mendations (Promega Corporation). Cells were lysed 24 h after

transfection and firefly luciferase activity was measured immedi-

ately after adding LAR II reagent. Afterwards, Stop & GloH
reagent was introduced and Renilla luciferase activity was recorded.

RNA Isolation and Real-time RT-PCR (RT-qPCR)
Rin-5F wt cells were exposed to 5 mM STZ for increasing times

(0.5, 1, 3 and 6 h). In some experiments cells were pretreated with

50 mM 3AB for 30 min, followed by 6 h STZ treatment. Total

RNA from Rin-5F control (wt and clone #1) and STZ-treated wt

cells was extracted using the GeneJET RNA Purification Kit

(Thermo Fisher Scientific). For cDNA synthesis, 1 mg of the total

RNA was treated with DNAse I and reverse-transcribed with

RevertAid First Strand cDNA Synthesis Kit (Fermentas) using

oligo(dT) primers. For RT-qPCR the Maxima SYBR Green/

ROX qPCR Master Mix (Fermentas) was used. mRNA levels

were quantitatively determined with an ABI Prism 7000 Sequence

Detection system (Applied Biosystems). The fragments were

amplified using the following primer sets: upstream 59-

GATTCTTTGAGAGCCATGTC-39 and downstream 59-

GTCTGTTGTTGCTTTTCAGC-39 for rat CXCL12 gene;

upstream 59-ATGAACGCCAAGGTCGTGGT-39 and down-

stream 59-GGGCACAGTTTGGAGTGTTG-39 for human

CXCL12 gene; upstream 59-CTGACTGGTACTTTGGGAAA-

39 and downstream 59-GGAACACCACCATCCACAGG-39 for

rat CXCR4 gene; upstream 59-CTGGTGGACATTGT-

GAAAGG-39 and downstream 59-

TCTGCCTTCTGCTCAGTTTC-39 for rat PARP-1 gene;

upstream 59-GCCAGCCGAGATCGTGGAAC-39 and down-

stream 59-GATCATGGGCGGGTGGTGGT-39 for rat YY1

gene; upstream 59-AGATTACTGCCCTGGCTCCT-39 and

downstream 59-ACATCTGCTGGAAGGTGGAC-39 for rat b-

actin gene. The real-time PCR program for quantitative RT-PCR

was comprised of an initial step at 50uC for 2 min, followed by an

initial denaturation step at 95uC for 10 min and a subsequent 2-
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step PCR program at 95uC for 15 s and 60uC for 60 s for 40

cycles. Negative controls lacking the template were used in all RT-

qPCR reactions. The expression levels of target genes were related

to the averaged expression level of rat b-actin as the housekeeping

gene.

Statistical Analysis
The results are expressed as means 6 SEM of triplicate data.

Student’s t test was used to determine the significance of

differences between two groups; p,0.05 was considered signifi-

cant.

Results

Increased Presence of CXCL12 Improves Pancreatic Beta
Cell Survival during Oxidative Stress Induced by a
Diabetogenic Stimulus

To confirm the prosurvival potential of CXCL12, the RIN-5F

rat pancreatic beta cell line (wt) and its counterpart possessing a

stably integrated human gene for CXCL12 (clone #1) were

exposed to increasing concentrations of STZ (Fig. 1A). Monitoring

cell viability revealed that increasing STZ concentrations were

toxic to proportionally more wt than clone #1 cells. STZ

concentration of 5 mM induced death in about 42% and 6% of

wt and clone #1 cells, respectively. This STZ concentration was

taken as EC50 in all further experiments. The viability data

indicates that the overexpressed CXCL12 gene and increased

presence of CXCL12 protein in the cell culture medium (inset in

Fig. 1A) exerted a prosurvival effect on pancreatic beta cells

through autocrine and paracrine signalling. RT-qPCR analysis of

the rat and human genes encoding for CXCL12 revealed no

significant differences in rat Cxcl12 expression between wt and

clone #1 cells while high expression of human Cxcl12 was

observed in clone #1 cells, confirming its stable genomic

integration (Fig. 1B). The existence of paracrine and autocrine

signalling was confirmed by the high expression of Cxcr4 in clone

#1 compared to wt cells (Fig. 1B).

The Comet assay was used to assess the levels of STZ-induced

DNA damage (Fig. 1C). A considerable percentage (90–95%) of wt

and clone #1 cells was without DNA tails (Fig. 1C) which reflects

the absence of DNA breaks. A 30 min treatment with 5 mM STZ

was accompanied by increasing amounts of DNA in the Comet

tails due to increased DNA damage. Estimation of the tail

moments confirmed that DNA damage was significantly less

pronounced in clone #1 than in wt cells.

Characterization of the Cxcl12 Gene Promoter Region
To elucidate the molecular mechanisms that regulate Cxcl12

transcription in pancreatic beta cells, we defined the Cxcl12

promoter sequence by computer analysis (Genomatix, Munich).

The Genomatix prediction of the Cxcl12 promoter revealed a

739 bp long sequence. The prediction covered sequences between

positions 21520023 and 21520762 (NCBI Reference Sequence:

NC_005103.3). The predicted Cxcl12 promoter possesses a non-

canonical TATA box (from 225 to 220 bp) with a cytosine

instead of adenosine at the second position of the TATA box, as

reported [39]. It also contains an initiator element (Int; from +13

to +20 bp), in agreement with the Int-consensus (KYAY*TCYYY)

surrounding the secondary transcription start site. Downstream

from the Int element lies a putative Kozak sequence (GCCATGG)

containing the initiation ATG codon (Fig. 2A), consistent with its

vertebrate consensus (RCCATGG) [40].

Further, the Cxcl12 promoter was analysed for potential YY1

binding sites. Transcription factor-binding site analysis identified

four putative YY1 binding sites (Fig. 2A, B) at positions 2432/

2424 bp, 2421/2413 bp, 2245/2239 bp, and +84/+90 bp.

Binding sites for Sp1, a trans-regulator of the human Cxcl12 gene,

were confirmed. PARP-1 binding sites were also defined (Fig. 2A,

B) according to the published literature data: 59-GGCCT-39

(2187/2183 bp), we predicted previously using cis-diammine-

dichloro-platinum II cross-linking procedure [17] and 59-

TGCCC-39 (at positions: 2448/2444 bp and +45/+49 bp) taken

from Akiyama et al. [22]. The both proteins are expressed in used

Rin-5F cell line (inset in Fig. 2A).

PARP-1 and YY1 are Part of the Transcription Machinery
that Regulates Cxcl12 Expression in vitro and in vivo

PARP-1 and YY1 binding affinity toward the Cxcl12 promoter

was examined by EMSA. Several nucleoprotein complexes were

formed between the Cxcl12 promoter and nuclear proteins isolated

from wt cells (Fig. 3A; lane 2). Super-shift analysis with different

anti-PARP-1 and anti-YY1 antibodies revealed that PARP-1

(Fig. 3A; lanes 3, 4, 5) and YY1 (lane 6) proteins were present in

the nucleoprotein complexes.

ChIP analysis was employed to determine whether the protein-

DNA interactions at the Cxcl12 promoter detected by EMSA also

occur in vivo (Fig. 3B). To examine protein binding to the promoter

at a higher resolution, the 739 bp promoter was divided into 3

fragments (Fig. 2B): fragment 1 (2546 to 2299 bp); fragment 2

(2319 to 254 bp); fragment 3 (274 to +193 bp). PARP-1 and

YY1 binding to all three Cxcl12 promoter fragments was observed

(Fig. 3B). Each promoter fragment contains at least one PARP-1

and YY1 binding site (Fig. 2A, B). The putative Kozak sequence in

the Cxcl12 promoter overlaps with the YY1 binding motif in the

third promoter fragment, indicating that the third fragment

contains the translation start site. The chromatin-associated Sp1

transcription factor, analysed as a positive Cxcl12 promoter-

binding protein [39], was also found at the Cxcl12 promoter

(Fig. 3B; lane 4) which correlates with its multiple binding sites

within Cxcl12 promoter (Fig. 2A).

PARP-1 is an Inhibitor and YY1 a Strong Activator of
CXCL12 Gene Transcription

To analyse Cxcl12 promoter activity, the promoter was cloned

into a luciferase expression vector (pCXCL12luc) (Fig. 4A).

Transfection of wt and clone #1 cells with pCXCL12luc showed

slight decrease in Cxcl12 promoter activity in clone #1 cells.

However, this reduction in promoter activity was not statistically

significant, indicating that Cxcl12 does not influence its own

expression (Fig. 4B). To examine the effect of PARP-1 on Cxcl12

transcription, promoter activity was examined in NIH3T3

fibroblasts (PARP+/+) and PARP-1 knockout fibroblasts

(PARP2/2) (Fig. 4C). Activity of the Cxcl12 promoter was

expressed relative to the activity of the control CMV promoter.

Functional analysis using the luciferase assay showed significantly

enhanced (2-fold) Cxcl12 promoter activity in PARP2/2 compared

to PARP+/+ fibroblasts (Fig. 4C). This was confirmed when a

PARP-1 expression construct (pEVC PARP) was introduced into

PARP+/+ and PARP2/2 cells which caused reduced expression of

pCXCL121luc (Fig. 4E, F, respectively). These results indicate

that PARP-1 downregulates Cxcl12 promoter activity.

To explore the influence of YY1, NIH3T3 fibroblasts were

transfected with pCXCL12luc and cotransfected with the

pcDNA3.1FLAGYY1 expression vector containing a YY1 expres-

sion unit (Fig. 4D). Cxcl12 promoter activity was enhanced 196-

fold when YY1 was overexpressed. This result suggests that YY1

strongly upregulates Cxcl12 promoter activity. YY1 (inset to

PARP-1 and YY1 Regulate Cxcl12 Transcription
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Figure 1. Overexpressed CXCL12 promotes better survival of injured pancreatic beta cells. (A) Viability assay performed on wt and clone
#1 cells after treatment with increasing STZ concentrations; mean values for clone #1 were significantly different (*) from those for wt cells treated
with the same STZ concentration (p,0.05). Increased presence of CXCL12 protein in the cell culture medium was verified by immunoblot analysis
with anti-CXCL12 antibody (figure inset): lane 1– wt cells; lane 2– clone #1 cells. (B) Relative mRNA levels determined by real-time PCR and presented
as ratios of ratCxcl12/b-actin, humanCXCL12/b-actin and ratCxcr4/b-actin. Mean values of clone #1 were significantly different (*) from those of wt
cells (p,0.05). (C) Assessment of DNA damage by the Comet assay in wt cells and clone #1 after STZ treatment. The mean values of the tail moment
(the parameter of DNA damage), of STZ-treated cells were significantly different (*) from those of untreated control cells (p,0.05); the mean values of
the tail moment of the STZ-treated clone #1 cells were significantly different (#) from those of STZ-treated wt cells (p,0.05). All results are expressed
as the means6SEM from three separate experiments performed in triplicate.
doi:10.1371/journal.pone.0059679.g001

Figure 2. Analysis of the 739 bp Cxcl12 promoter for transcription factor binding sites. (A) Putative YY1 sites are enclosed in an oval; Sp1
binding sites are underlined; three identified published PARP-1 DNA binding motifs [17,22] are marked by rectangles; the TATA-like and Int elements
and Kozak sequence are indicated. Expression of YY1 and PARP-1 in the Rin-5F cell line was verified by immunoblot analysis (figure inset). (B) A
schematic diagram of the three promoter fragments used in ChIP analysis; each promoter fragment contained at least one putative PARP-1 and YY1
motif, represented by a rectangle and yin-yang symbol, respectively.
doi:10.1371/journal.pone.0059679.g002
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Fig. 4D) and PARP-1 (inset to Fig. 4E, F) overexpression was

verified by immunoblot analysis of cell lysates.

STZ-induced Toxicity in Pancreatic Beta Cells is
Accompanied by Changed Regulation of Cxcl12
Promoter Activity

During the early stage of oxidative stress, i.e. after a 30 min

treatment of wt cells with 5 mM STZ (EC50), the mRNA levels for

Cxcl12, Parp-1 and Yy1 decreased slightly (but not significantly)

below the respective basal mRNA values (Fig. 5B, C, D; bar 2). To

analyse the later stages of oxidative stress, wt cells were treated

with 5 mM STZ for increasing times (1, 3, and 6 h). DNA damage

was monitored by the Comet assay (Fig. 5A). The level of Cxcl12

transcription was estimated using RT-qPCR (Fig. 5B). As can be

seen in Fig. 5A, DNA damage increased with the length of

exposure of cells to STZ. Estimation of the amount of transcribed

Cxcl12 at the respective time points confirmed that exposure to

5 mM STZ for 6 h caused a peak in Cxcl12 mRNA synthesis

(Fig. 5B; column 5), suggesting that when DNA is extensively

damaged (Fig. 5A; column 5), Cxcl12 transcription is induced. The

extended STZ treatment was accompanied by similar patterns of

increased Yy1 and Parp-1 mRNAs (Fig. 5C, D). The Parp-1 mRNA

level increased slightly after 6 h of STZ exposure, but remained

below the control value (Fig. 5C; column 5), while the Yy1 mRNA

level was significantly above the control level (Fig. 5D; column 5),

suggesting that long-term exposure of pancreatic beta cells to STZ-

induced diabetogenic stimulation was accompanied by increased

Yy1 transcription. The mRNA levels estimated by RT-qPCR were

accompanied with analysis of the protein levels at the same time

points using immunoblot analysis (Fig. 5E). Increased amount of

YY1, due to its ability to upregulate Cxcl12 transcription, may be

responsible for higher Cxcl12 expression also observed after 6 h of

STZ treatment.

PARP-1 and YY1 binding to the Cxcl12 promoter after short-

and long-term cell exposure to STZ was examined by the ChIP

assay. Chromatin was isolated from Rin-5F wt control cells and

cells exposed to 5 mM STZ for 30 min (early stage of oxidative

stress) and 6 h (later stage of oxidative stress) (Fig. 6). The ChIP

experiment revealed that the STZ treatment for 30 min lowered

PARP-1 affinity for fragment 3 while its affinity for Cxcl12

fragments 1 and 2 remained as in the control. As a result of the

30 min exposure to STZ, YY1 exhibited very low binding to

fragments 1 and 3 and no binding to fragment 2 (Fig. 6). The STZ

treatment for 6 h revealed opposite binding pattern for PARP-1

and YY1 if compare to 30 min STZ treatment. PARP-1 was

bound to Cxcl12 promoter fragment 1 but displayed no binding

affinity to promoter fragments 2 and 3 (Fig. 6). As expected, YY1

displayed increased binding affinity for all three Cxcl12 promoter

fragments, which resulted in the increased CXCL12 gene

expression during extended (6 h) pancreatic beta cell injury.

Influence of PARP-1 Inhibition on Cxcl12 Promoter
Regulation

PARP-1 enzymatic activity was chemically inhibited using 3AB,

a general PARP-1 enzymatic activity blocker. Treatment of wt

cells with 50 mM 3AB had no apparent effect on cell viability,

while in the cells treated with 5 mM STZ we observed slight

improvement in cell survival (Fig. 7A). When wt cells were treated

with STZ together with 3AB, the disappearance of the necrotic

PARP-1 fragment indicates that the necrotic pathway was turned

off as a consequence of the inhibition of PARP-1 enzymatic

activity (Fig. 7B). Besides pronounced PARP-1 apoptotic frag-

ment, PARP-1 inhibition was accompanied with the activation of

the main effector caspase 3 (Fig. 7B).

RT-qPCR analysis did not reveal significant changes in PARP-1

gene transcription in the presence of STZ, either alone or together

with 3AB. Cxcl12 mRNA levels exhibited pronounced differences

(Fig. 7C). The treatment with STZ led to upregulation of Cxcl12

while treatment with STZ and 3AB downregulated Cxcl12

transcription (Fig. 7C). We suggest that intensive binding of non-

automodified PARP-1 to the Cxcl12 promoter partially suppressed

promoter activity. The ability of non-automodified PARP-1 to

bind the Cxcl12 promoter was proven in an EMSA experiment

using recombinant (non-automodified) PARP-1 (Fig. 7D; lane 2).

In addition, we observed that YY1 was not ADP-ribosylated, in

both physiological and STZ-compromised conditions (Fig. 7E)

that allows its binding to Cxcl12 promoter and subsequent

induction of the Cxcl12 expression in the later stage of oxidative

stress.

Discussion

The positive impact of the elevated expression of the chemokine

CXCL12 on prosurvival and proliferative phenotype in pancreatic

islet cells has been observed recently [5]. Based on our

experimental results and information from other studies [5,6,7],

we confirmed importance of CXCL12 as a pancreatic beta cell

prosurvival factor. Going a step further, we clarified the role of

PARP-1 and YY1 in the regulation of the Cxcl12 transcription,

suggesting that transcriptional activation of the Cxcl12 promoter

certainly depends on the finely balanced functional interplay of

these proteins.

For the first time we defined and analysed the promoter sequence

of the rat CXCL12 gene using computer analyses (Genomatix,

Munich). Up to now, transcriptional regulation of the Cxcl12

promoter has been described in human [39,41,42,43,44] and mouse

[45,46] cells. Their results on mammalian Cxcl12 promoter

characterization and our data analysis show that Cxcl12 promoter

contains a non-canonical TATA box and a downstream Int element

for the initiation of transcription [39,45] that can function as an

alternative promoter in eukaryotic genes that lack the classical

TATA box [47]. In the rat Cxcl12 promoter, Int is located 31 bp

downstream from the non-canonical TATA box, while in the

human this distance is 26 bp [39]. The Kozak sequence

(CCATGG) with the contained ATG initiation codon was

designated as a translation start site [40]. In human and mouse

Cxcl12 promoters, Kozak sequence is not particularly defined so far

[39,40]. We observed the high degree of similarity between human

and rodent Kozak sequence, although the Kozak sequence is not

strictly conserved in eukaryotic mRNAs [48]. As in the mouse Parp-

1 promoter [17] we also observed overlap of the YY1 core-binding

motif (ATG) with the Kozak sequence (GCCATGG) in the rat

Cxcl12 promoter. This is in agreement with the colocalization of the

YY1 motif and the translation start site in many human promoters

[28]. Our analysis of the organization of the rat Cxcl12 promoter

Figure 3. PARP-1 and YY1 binding affinity toward the Cxcl12 promoter. (A) EMSA was performed with end-protected (biotinylated)
fragments to permit PARP-1 binding exclusively to DNA-internal motifs. Super-shift analysis was performed using anti-PARP-1 and anti-YY1 antibodies
as indicated. (B) ChIP analysis was performed with PARP-1 and YY1 antibodies. PARP-1 and YY1 binding was verified for each Cxcl12 promoter
fragment; fragment 1 is 246 bp; fragment 2 is 265 bp; fragment 3 is 268 bp. For immunoprecipitation, RNA pol II served as a positive, and IgG as a
negative control. In the PCR reaction the positive control was genomic DNA (input); a water-only (blank) was the negative control.
doi:10.1371/journal.pone.0059679.g003
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also revealed the presence of GC-rich sequences in the 5’-flanking

region, as reported previously [39]. Ubiquitous expression of the

Cxcl12, except in blood cells, is consistent with the presence of the

GC-rich sequence in the 5’-flanking region and the non-canonical

TATA box, common features of housekeeping genes, as we also

observed for the mouse PARP-1 gene [17].

Figure 4. PARP-1 downregulates and YY1 upregulates Cxcl12 promoter activity. (A) Constructs used in transfection experiments: pMDICluc
– control plasmid; the luciferase gene was driven by the CMV promoter; pCXCL12luc – reporter construct; the luciferase gene under the control of the
Cxcl12 promoter; pECV PARP – PARP-1 cDNA expression construct; pcDNA3.1FLAGYY1– expression vector containing a YY1 expression unit. pMDICluc
and pCXCL12luc constructs were used for transfection of (B) Rin-5F wt and clone #1 cells and (C) NIH3T3 (PARP+/+) and NIH3T3 (PARP2/2) mouse
embryonic fibroblasts. Activity of the Cxcl12 promoter was expressed relative to the activity of the control CMV promoter. (D) Transfection of NIH3T3
cells with pCXCL12luc and combined pCXCL12luc/pcDNA3.1FLAGYY1 constructs. Overexpression (OE) of YY1 was confirmed by immunoblot analysis
with anti-YY1 antibody (figure inset): lane 1– NIH3T3 cell lysate; lane 2– NIH3T3 cell lysate after pcDNA3.1FLAGYY1 transfection. Transfection with
pCXCL12luc or with the combination of pCXCL12luc/pECV PARP was performed in (E) NIH3T3 (PARP+/+) cells and (F) NIH3T3 (PARP2/2) cells. PARP-1
overexpression (OE) was verified by immunoblot analysis (figure insets): lane 1– NIH3T3 cell lysate; lane 2– NIH3T3 cell lysate after pECV PARP
transfection. Statistical significance (*) p,0.05. All results are expressed as the means6SEM, obtained from three separate experiments performed in
triplicate.
doi:10.1371/journal.pone.0059679.g004
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Up to now several transcription factors involved in the

regulation of CXCL12 gene transcription have been described

in human and mouse. The transcription factors of the early B cell

factor (EBF) family [45], Sp1 [39], STAT3 [46], c-myb [43], C/

EBPb [41,42] and Ets-related molecule [49] were defined as

promoter activators while transcription factors Foxf1 [50] and p53

Figure 5. Increasing time of STZ treatment caused changes in Cxcl12, Parp-1 and Yy1 transcription and protein expression in Rin-5F
wt cells. (A) DNA damage was determined by the Comet assay (the tail moment was the parameter of DNA damage). Transcription of Cxcl12 (B),
Parp-1 (C) and Yy1 (D) after increasing times of exposure to STZ was estimated by RT-qPCR. Relative mRNA levels are presented as the ratios of Cxcl12/
b-actin, Parp-1/b-actin and Yy1/b-actin. (*) Mean values were significantly different from those of untreated control cells (p,0.05). Results are
expressed as the means6SEM from three separate experiments performed in triplicate. (E) Immunoblot analysis was performed with anti-CXCL12,
anti-PARP-1, anti-YY1 and anti-b-actin (loading control) antibodies using cell lysates isolated from control and STZ treated cells at defined time points.
doi:10.1371/journal.pone.0059679.g005
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[51] were identified as a promoter suppressors. The 1 kb long

proximal human Cxcl12 promoter possesses 15 putative Sp1

binding motifs, of which 6 are important for basal human Cxcl12

expression [39]. Our computer analysis confirmed the presence of

8 putative Sp1 binding sites within the Cxcl12 promoter, all

surrounding the non-conventional TATA box. In our study,

transcription factor-binding site analysis showed several putative

binding sites within the Cxcl12 promoter for the following

transcription factors: C/EBPb, C/EBPa, FOXO3a, HMGI/Y,

p53, STAT3 and NF-kB. EMSA experiments and ChIP assays

confirmed binding affinities for some of these transcription factors

that will be published elsewhere. Although PARP-1 has been

characterized as a transcription factor only recently, an increasing

number of reports have been published, indicating that PARP-1

can also bind to DNA in a sequence-specific manner. While

several PARP-1 binding motifs have been published (reviewed in

[17,18,21,22,23]), a DNA binding consensus sequence for PARP-1

is still not available in the existing computer analysis tools. For that

reasons we analysed the previously published PARP-1 DNA

binding sequences [17,22].

Our transfection experiments clearly show that PARP-1 has a

pivotal role in partial suppression of the Cxcl12 promoter, allowing

for its constitutive expression. During the oxidative stress, due to

PARP-1 automodification and the negative charge of ADP-ribose

polymers, PARP-1 is detached from the Cxcl12 promoter thus

allowing for enhanced Cxcl12 transcription. This momentum of

PARP-1 release from the Cxcl12 promoter allows for increased

gene transcription and places PARP-1 in the position of a weak

suppressor, enabling basal promoter activity. The suppressive

effect of PARP-1 on gene transcription was observed for the Tracp

gene in pre-osteoclastic cells [52] and for its own gene in mouse

fibroblasts [17]. Our observation is in agreement with Amiri et al.

[53] who revealed the suppressive effect of PARP-1 on CXCL1

gene expression. In contrast, Nirodi et al. [21] reported that

PARP-1 may act as a coactivator of CXCL1 gene transcription.

Besides Cxcl12, PARP-1 is also involved in the regulation of several

other diabetes-related genes. PARP-1 acts as a corepressor for the

Foxo1 gene, which could play an important role in proper cell

proliferation and in the response to oxidative stress [54].

Furthermore, Akiyama et al. [22] demonstrated that PARP-1

forms the active complex for Reg transcription with some nuclear

proteins, and that complex formation was stabilized when PARP-1

was not automodified.

The CXCL12 gene was initially considered to be constitutively

expressed. However, it was recently established that its transcrip-

tion is induced by cell injury [6], in response to cytokines and cell

confluence [41] and during cell growth arrest and hypoxia [55].

Recently, Liu et al. [6] observed short-term influence of exogenous

Figure 6. STZ-induced changes in Cxcl12 promoter regulation. ChIP analysis was used to investigate PARP-1 and YY1 binding affinity toward
the Cxcl12 promoter during the early (0.5 h) and late stage of oxidative stress (6 h). Immunoprecipitation was performed with anti-PARP-1 and anti-
YY1 antibodies. The controls in immunoprecipitation and PCR are shown in Fig. 3.
doi:10.1371/journal.pone.0059679.g006
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CXCL12 on the induction of its own gene expression. In our

experiments, long-term (chronic) presence of CXCL12 in clone

#1 cells has no autoregulatory transcriptional potential. Under

conditions of YY1 overexpression, which is followed by its

increased binding to Cxcl12 promoter, we observed highly

increased Cxcl12 promoter activity. This lends further support to

the concept that the Cxcl12 promoter is inducible, i.e., character-

ized by a low basal activity that greatly increases upon induction.

Baumeister et al. [56] reported similar pattern of transcriptional

regulation by YY1 concerning Grp78 gene promoter regulation.

The authors proposed that YY1 has no effect on Grp78 promoter

basal activity, however in cells undergoing ER stress YY1 strongly

enhances Grp78 promoter induction. The observation that both

YY1 [35] and CXCL12 genes [55] are upregulated by hypoxia

points to the interrelatedness of their responses to stress signals. In

contrast to its role in Cxcl12 transcription, YY1 represses the

activities of Cxcr4 and Cxcr7 promoters through its binding to

upstream regions on their promoters [35]. As a potential element

of a negative feed-back mechanism controlling the CXCL12/

CXCR4 axis, this action represents an additional level of control

of Cxcl12 expression by YY1. Therefore, we believe that YY1

could be a major regulator which helps beta cells to transcribe

important proteins that help coping with oxidative stress. In

addition, strong transcriptional induction of the prosurvival

Figure 7. The effect of PARP-1 inhibition on Cxcl12 promoter regulation. (A) Viability assay was performed with wt cells treated with
increasing concentrations of 3AB, followed by STZ treatment. (B) Immunoblot analysis was performed with anti-PARP-1, anti-caspase 3 and anti-b-
actin (loading control) antibodies using cell lysates isolated from control, STZ-treated and cells pre-treated with 3AB, followed by STZ treatment. The
apoptotic (89 kD) and necrotic (55 kD) PARP-1 fragment are indicated. (C) Cxcl12 and Parp-1 transcription after treatments with either 3AB or STZ,
and after incubation with 3AB, followed by STZ treatment, was estimated by RT-qPCR. Relative mRNA levels are presented as the ratios of Cxcl12/b-
actin and Parp-1/b-actin. (*) Mean values were significantly different from those of untreated control cells (p,0.05). (#) Mean values were significantly
different from those of STZ-treated cells (p,0.05). Results are expressed as the means6SEM from three separate experiments performed in triplicate.
(D) EMSA showing binding of recombinant PARP-1 and total nuclear proteins to the Cxcl12 promoter (lanes 2 and 3, respectively). (E) Nuclear proteins
from control (C) and STZ-treated wt cells (STZ) probed with anti-ADP-ribose antibody to detect automodified PARP-1 and other ADP-ribosylated
proteins.
doi:10.1371/journal.pone.0059679.g007
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chemokine could be the pancreatic cell’s response to severe

oxidative stress.

We have summarized the apparently opposing effects of PARP-

1 and YY1 on Cxcl12 transcription in a model presented in Fig. 8.

Our findings suggest that in the physiological state Cxcl12

transcription is supported by the binding of non-automodified

PARP-1 and YY1 to the Cxcl12 promoter. We hypothesize that

under basal conditions when PARP-1 activity in pancreatic beta

cells is negligible, the bound non-automodified PARP-1 offsets the

elevation in Cxcl12 transcription that occurs in the presence of

YY1 (Fig. 8A). In response to cytotoxic signals, as PARP-1

enzymatic activity rises, PARP-1 automodification progressively

lowers PARP-1 affinity for the Cxcl12 promoter, since PARP-1

automodification blocks the ability of PARP-1 to bind to DNA

[57] (Fig. 8B). This has an overall permissive effect on Cxcl12

transcription. However, short-lasting exposure to STZ-induced

diabetogenic signals was accompanied by a decrease in YY1

binding to DNA and consequent removal of its stimulatory effect

on Cxcl12 expression (Fig. 8B). Prolonged exposure to cytotoxic

signals was followed by significantly enhanced PARP-1 auto-

modification and decreased binding affinity for Cxcl12 promoter

(Fig. 8C). In contrast, prolonged pancreatic beta cell injury is

followed by increased YY1 binding to Cxcl12 promoter that will

cause upregulation of the CXCL12 gene expression (Fig. 8C). It

would appear that at relatively low levels of cytotoxicity, an

increase in Cxcl12 transcription that would result from the lifting of

transcriptional suppression by PARP-1, is tempered by the

withdrawal of YY1 stimulation. In contrast, severe beta cell injury

was associated with increased Yy1 expression that was followed by

increased binding of YY1 protein to the Cxcl12 promoter. The

promoter assumed a more relaxed conformation due to a major

increase in PARP-1 activity with resulting ADP-ribosylation of

chromatin proteins, and the complete lifting of transcriptional

suppression as a result of extensive PARP-1 automodification. The

sum effect of these events is the induction of Cxcl12 expression and

subsequent prosurvival actions of CXCL12.

Concluding Remarks
Several transcription factors involved in beta cell functioning,

differentiation, proliferation and survival have been identified so

far (reviewed in [58]). Novel drugs, which enhance the expression

of key transcription factors, as in the case of Pdx-1 [59], could

restore beta cell functions in diabetic patients. We believe that the

present study is particularly relevant since two transcription factors

that have been identified as important regulators of Cxcl12

transcription could in the future serve as focal points for targeting

Cxcl12 expression. An open challenge is to find a way of inducing

and/or suppressing transcription factors that participate in the

transcriptional regulation of genes that could improve beta cell

functioning. This strategy could advance the treatment of diabetes.
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