53 research outputs found

    Group B <em>Streptococcus </em>engages an inhibitory siglec through sialic acid mimicry to blunt innate immune and inflammatory responses <em>in vivo</em>

    Get PDF
    Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-ÎșB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Language of Lullabies: The Russification and De-Russification of the Baltic States

    Get PDF
    This article argues that the laws for promotion of the national languages are a legitimate means for the Baltic states to establish their cultural independence from Russia and the former Soviet Union

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Evidence for differential localization of two binding sites for l-[\u3csup\u3e3\u3c/sup\u3eH]glutamate in rat fascia dentata

    No full text
    Two binding sites for l-[3H]glutamate were tentatively localized in rat fascia dentata by determining the effects of selective lesions on specific binding. Both destruction of dentate granule cells with colchicine and ablation of the ipsilateral entorhinal cortex markedly reduced radioligand binding to a quisqualate-sensitive site (GLU A), but only the entorhinal lesion significantly reduced binding to a site that is less sensitive to quisqualate (GLU B). These results suggest that GLU A binding sites are localized mainly on the dentate granule cells, whereas GLU B binding sites are localized, in part, on the perforant path fibers, but not on granule cells. © 1983

    Complex Binding of l‐[\u3csup\u3e3\u3c/sup\u3eH]Glutamate to Hippocampal Synaptic Membranes in the Absence of Sodium

    No full text
    Abstract: Specific binding of L‐[3H]glutamate was investigated with a thoroughly washed synaptic membrane preparation from rat hippocampal formation, a region of brain densely innervated by putatively glutamatergic fibers. L‐[3H]Glutamate bound rapidly, saturably, and reversibly to these membranes in the absence of Na+. Specific binding was greatest around 38°C and at a slightly acidic pH. Saturation isotherms fit a model of two independent binding sites with dissociation constants of 11 and 570 nM and corresponding densities of 2.5 and 47 pmol/mg protein. All potent amino acid excitants, except N‐methyl‐D‐aspartate and kainate, and several excitatory amino acid antagonists inhibited specific radioligand binding with IC50 values between 10−1 M and 10−4 M. In contrast, weak amino acid excitants and an inhibitor of glutamate uptake were nearly inactive. Displacement curves were analyzed with a computer program that assumed the simultaneous contributions of two independent sites at which each compound competitively inhibited the binding of L‐[3H]glutamate. According to this analysis, ibotenate and the L‐ and D‐isomers of glutamate and aspartate bind preferentially to the high‐affinity site, whereas quisqualate, L‐α‐aminoadipate, and the L‐ and D‐isomers of homocysteate bind preferentially to the low‐affinity site. With the notable exception of γ‐D‐glutamylglycine, all of the more potent antagonists appear to bind preferentially to the low‐affinity site. Both sites exhibit marked stereoselectivity for L‐glutamate. D‐ and L‐Homocysteate and most excitatory amino acid antagonists increased specific binding at concentrations below those required to demonstrate inhibition. Some properties of the low‐affinity binding site resemble those of junctional glutamate receptors on insect muscle, but neither site appears to correspond to the “N‐methyl‐D‐aspartate receptor” or the “quisqualate receptor.” Copyright © 1982, Wiley Blackwell. All rights reserve

    Enhanced Tonic GABA Current in Normotopic and Hilar Ectopic Dentate Granule Cells After Pilocarpine-Induced Status Epilepticus

    No full text
    In temporal lobe epilepsy, loss of inhibitory neurons and circuit changes in the dentate gyrus promote hyperexcitability. This hyperexcitability is compensated to the point that dentate granule cells exhibit normal or even subnormal excitability under some conditions. This study explored the possibility that compensation involves enhanced tonic GABA inhibition. Whole cell patch-clamp recordings were made from normotopic granule cells in hippocampal slices from control rats and from both normotopic and hilar ectopic granule cells in slices from rats subjected to pilocarpine-induced status epilepticus. After status epilepticus, tonic GABA current was an order of magnitude greater than control in normotopic granule cells and was significantly greater in hilar ectopic than in normotopic granule cells. These differences could be observed whether or not the extracellular GABA concentration was increased by adding GABA to the superfusion medium or blocking plasma membrane transport. The enhanced tonic GABA current had both action potential–dependent and action potential–independent components. Pharmacological studies suggested that the small tonic GABA current of granule cells in control rats was mediated largely by high-affinity α4ÎČxÎŽ GABAA receptors but that the much larger current recorded after status epilepticus was mediated largely by the lower-affinity α5ÎČxÎł2 GABAA receptors. A large α5ÎČxÎł2-mediated tonic current could be recorded from controls only when the extracellular GABA concentration was increased. Status epilepticus seemed not to impair the control of extracellular GABA concentration by plasma membrane transport substantially. Upregulated tonic GABA inhibition may account for the unexpectedly modest excitability of the dentate gyrus in epileptic brain
    • 

    corecore