231 research outputs found

    Deforming tachyon kinks and tachyon potentials

    Full text link
    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed.Comment: To appear in JHEP, 19 pages, 5 eps figures, minor changes and one reference adde

    Dynamic structure factor of the Ising model with purely relaxational dynamics

    Get PDF
    We compute the dynamic structure factor for the Ising model with a purely relaxational dynamics (model A). We perform a perturbative calculation in the ϵ\epsilon expansion, at two loops in the high-temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the high-temperature phase. We find that the dynamic structure factor is very well approximated by its mean-field Gaussian form up to moderately large values of the frequency ω\omega and momentum kk. In the region we can investigate, kξ5k\xi \lesssim 5, ωτ10\omega \tau \lesssim 10, where ξ\xi is the correlation length and τ\tau the zero-momentum autocorrelation time, deviations are at most of a few percent.Comment: 21 pages, 3 figure

    Renal tubular damage and worsening renal function in chronic heart failure: Clinical determinants and relation to prognosis (Bio-SHiFT study)

    Get PDF
    Background: It is uncertain that chronic heart failure (CHF) patients are susceptible to renal tubular damage with that of worsening renal function (WRF) preceding clinical outcomes. Hypothesis: Changes in tubular damage biomarkers are stronger predictors of subsequent clinical events than changes in creatinine (Cr), and both have different clinical determinants. Methods: During 2.2 years, we repeatedly simultaneously collected a median of 9 blood and 8 urine samples per patient in 263 CHF patients. We determined the slopes (rates of change) of the biomarker trajectories for plasma (Cr) and urinary tubular damage biomarkers N-acetyl-β-d-glucosaminidase (NAG), and kidney-injury-molecule (KIM)-1. The degree of tubular injury was ranked according to NAG and KIM-1 slopes: increase in neither, increase in either, or increase in both; WRF was defined as increasing Cr slope. The composite endpoint comprised HF-hospitalization, cardiac death, left ventricular assist device placement, and heart transplantation. Results: Higher baseline NT-proBNP and lower eGFR predicted more severe tubular damage (adjusted odds ratio, adj. OR [95%CI, 95% confidence interval] per doubling NT-proBNP: 1.26 [1.07-1.49]; per 10 mL/min/1.73 m2 eGFR decrease 1.16 [1.03-1.31]). Higher loop diuretic doses, lower aldosterone antagonist doses, and higher eGFR predicted WRF (furosemide per 40 mg increase: 1.32 [1.08-1.62]; spironolactone per 25 mg decrease: 1.76 [1.07-2.89]; per 10 mL/min/1.73 m2 eGFR increase: 1.40 [1.20-1.63]). WRF and higher rank of tubular injury individually entailed higher risk of the composite endpoint (adjusted hazard ratios, adj. HR [95%CI]: WRF 1.9 [1.1-3.4], tubular 8.4 [2.6-27.9]; when combined risk was highest 15.0 [2.0-111.0]). Conclusion: Slopes of tubular damage and WRF biomarkers had different clinical determinants. Both predicted clinical outcome, but this association was stronger for tubular injury. Prognostic effects of both appeared independent and additive

    Not All Arms of IgM Are Equal: Following Hinge-Directed Cleavage by Online Native SEC-Orbitrap-Based CDMS

    Get PDF
    Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 μg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab’)2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab’)2 subunits is much slower than the other four F(ab’)2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS

    New Effective Feynman-like Rules for the Multi-Regge QCD Asymptotics of Inclusive Multijet Production

    Full text link
    New effective Feynman-like rules are defined for inclusive multijet cross sections in the multi-Regge regime. The solution of the BFKL equation is used as a starting point. The resulting rules involve conformal weight and rapidity as a momentum and a coordinate respectively and are translation invariant in the coordinates. We use the effective rules to calculate ultra high energy asymptotics of inclusive multijet production. The dependence on the parton densities occurs only in the overall normalization of the asymptotic cross sections.Comment: 12 pages in Latex, 3 figs by epsfig, refs update

    The LUNEX5 project

    Get PDF
    http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/froa03.pdfInternational audienceLUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, and coherent pulses in the soft X-ray region. The project consists of a Free Electron Laser (FEL) line enabling the most advanced seeding configurations: High order Harmonic in Gas (HHG) seeding and Echo Enable Harmonic Generation (EEHG) with in-vacuum (potentially cryogenic) undulators of 15 and 30 mm period. Two accelerator types feed this FEL line : a 400 MeV Conventional Linear Accelerator (CLA) using superconducting cavities compatible with a future upgrade towards high repetition rate, for the investigations of the advanced FEL schemes; and a 0.4 - 1 GeV Laser Wake Field Accelerator (LWFA), to be qualified in view of FEL application, in the single spike or seeded regime. Two pilot user experiments for timeresolved studies of isolated species and solid state matter dynamics will take benefit of LUNEX5 FEL radiation and provide feedback of the performance of the different schemes under real user conditions
    corecore