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Abstract

Background: It is uncertain that chronic heart failure (CHF) patients are susceptible

to renal tubular damage with that of worsening renal function (WRF) preceding clini-

cal outcomes.

Hypothesis: Changes in tubular damage biomarkers are stronger predictors of subse-

quent clinical events than changes in creatinine (Cr), and both have different clinical

determinants.

Methods: During 2.2 years, we repeatedly simultaneously collected a median of

9 blood and 8 urine samples per patient in 263 CHF patients. We determined the

slopes (rates of change) of the biomarker trajectories for plasma (Cr) and urinary

tubular damage biomarkers N-acetyl-β-D-glucosaminidase (NAG), and kidney-injury-

molecule (KIM)-1. The degree of tubular injury was ranked according to NAG and

KIM-1 slopes: increase in neither, increase in either, or increase in both; WRF was

defined as increasing Cr slope. The composite endpoint comprised HF-hospitaliza-

tion, cardiac death, left ventricular assist device placement, and heart transplantation.

Results: Higher baseline NT-proBNP and lower eGFR predicted more severe tubular

damage (adjusted odds ratio, adj. OR [95%CI, 95% confidence interval] per doubling

NT-proBNP: 1.26 [1.07-1.49]; per 10 mL/min/1.73 m2 eGFR decrease 1.16

[1.03-1.31]). Higher loop diuretic doses, lower aldosterone antagonist doses, and

higher eGFR predicted WRF (furosemide per 40 mg increase: 1.32 [1.08-1.62]; spi-

ronolactone per 25 mg decrease: 1.76 [1.07-2.89]; per 10 mL/min/1.73 m2 eGFR

increase: 1.40 [1.20-1.63]). WRF and higher rank of tubular injury individually

entailed higher risk of the composite endpoint (adjusted hazard ratios, adj. HR [95%

CI]: WRF 1.9 [1.1-3.4], tubular 8.4 [2.6-27.9]; when combined risk was highest 15.0

[2.0-111.0]).
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Conclusion: Slopes of tubular damage and WRF biomarkers had different clinical

determinants. Both predicted clinical outcome, but this association was stronger for

tubular injury. Prognostic effects of both appeared independent and additive.

K E YWORD S

cardiorenal interaction, heart failure, tubular damage biomarkers, tubular injury, worsening

renal function

1 | INTRODUCTION

Renal dysfunction is the most prevalent comorbidity among patients with

chronic heart failure (CHF) and is strongly associated with clinical out-

comes such as heart failure (HF) hospitalization and mortality.1-4 Under-

lying hemodynamic dependence between the heart and the kidneys is

widely considered as the main driver of the cardiorenal interaction lead-

ing to adverse outcomes.5 However, other biochemical, neurohumoral,

metabolic, and immunological derangements also occur during the

organs' interplay, which has led to the definition of the cardiorenal syn-

drome (CRS).6,7 Because renal dysfunction entails such a poor prognosis

in CHF, attention has focused on identifying the signals along the cardio-

renal axis that precede adverse outcomes.8 However, the mechanisms

and the chronology according to which the failing heart damages-specific

renal structures that lead to CRS are poorly understood.9

Decreased baseline renal function is clearly important, but wors-

ening renal function (WRF) quantified as creatinine (Cr) increase over

time has been shown to be an even more prominent predictor of

adverse outcome in CHF.1 We have recently confirmed and extended

these findings by using frequent repeated renal function assessments

in CHF patients.4 In the setting of CHF, WRF may be due to several

factors. For example, it may be just temporally reduced due to hemo-

dynamic changes, but it may also be due to permanently reduced renal

function from nephron loss.

Renal tubular damage is present in CHF patients due to

tubulointerstitial injury by renal tissue hypoperfusion or due to a

damaged glomerular filtration barrier.10-12 Studies have shown that

higher levels of urinary tubular damage markers N-acetyl-β-D-

glucosaminidase and kidney injury molecule (KIM)-1 entailed poor

prognosis in CHF independently of eGFR.4,12 Therefore, markers of

renal tubular damage may reflect another pathway for renal alter-

ations in the milieu of the CRS.

To investigate the degree of tubular injury, we used well-

validated urinary markers13,14 such as NAG and KIM-1 qualified as

the biomarker for kidney toxicity in preclinical settings by the

U.S. Food and Drug Administration and European Medicines

Agency.15,16 These urinary markers can both detect and quantify the

degree of tubular injury providing discrimination of histopathological

severity of the tubular damage caused by both ischemic injury and

nephrotoxins.16-18

There is a potential for simultaneous biomarker-based monitoring

of renal function and tubular status to improve the management of

CHF patients during their follow-up.

2 | MATERIAL AND METHODS

The serial biomarker measurements and new echocardiographic tech-

niques in chronic heart failure patients result in tailored prediction of

prognosis (Bio-SHiFT) is a prospective cohort of stable patients with

CHF, conducted in Erasmus Medical Center, Rotterdam, and

Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands. Patients

were included if aged ≥18 years and if CHF had been diagnosed

≥3 months ago according to the European Society of Cardiology

guidelines (for details, see Figure S1).19 Patients were ambulatory and

stable, that is, they had not been hospitalized for HF in the past

3 months. The study was approved by the medical ethics committees,

conducted in accordance with the Declaration of Helsinki, and regis-

tered in ClinicalTrials.gov (NCT01851538). Written informed consent

was obtained from all patients. This investigation comprised 263 stable

patients with CHF, who were enrolled during the first inclusion period

(October 2011 to June 2013) and completed their follow-up in 2015.

Since 95% of the study population had heart failure with reduced

ejection fraction (HFrEF), in this study, we focused on the HFrEF

patients (n = 250).

All patients were evaluated by research physicians, who collected

information on HF-related symptoms, New York Heart Association

class (NYHA) class, and performed a physical examination and col-

lected samples. Information on HF etiology, ejection fraction, cardio-

vascular risk factors, comorbidities, and treatment were retrieved

from hospital records. Study follow-up visits were predefined and

scheduled tri-monthly (±1 month), with a maximum of 10 study

follow-up visits. All patients were also routinely followed at the outpa-

tient clinic by treating physicians who were blinded for biomarker

data. Occurrence of rehospitalizations for HF, myocardial infarction

(MI), percutaneous coronary intervention (PCI), coronary artery bypass

grafting (CABG), arrhythmias, cerebrovascular accident (CVA), cardiac

transplantation, left ventricular assist device (LVAD)-placement, and

mortality was recorded in electronic case-report forms, and associated

hospital records and discharge letters were collected. A clinical event

committee, blinded for biomarker data, reviewed hospital records and

discharge letters, and adjudicated the study endpoints.

The composite endpoint comprised cardiac death, cardiac trans-

plantation, LVAD implantation, and hospitalization for the manage-

ment of acute or worsened HF, whichever occurred first. Cardiac

death was defined as death from MI or other ischemic heart disease

(implantable cardioverter defibrillator (ICD)-10: I20-I25), death from

other heart disease including HF (I30-I45 and I47-I52), sudden cardiac
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TABLE 1 Patient characteristics stratified by NAG and KIM-1 slopes

NAG and KIM-1 stable/
decreased (n = 66)

NAG or KIM-1
increased (n = 104)

NAG and KIM-1
increased (n = 80) P-value

Clinical features

Age (years) 65 (57-72) 68 (60-77) 70 (60-80) .016*

Men 48 (73) 77 (74) 59 (74) .90

Ischemic etiology 27 (41) 48 (46) 41 (51) .21

BMI kg/m2 27.4 (25.1-30.9) 26.2 (24.0-30.0) 26.3 (24.2-30.2) .39

Heart rate b.p.m. 66 (60-74) 66 (59-71) 69 (60-76) .16

SBP mmHg 121 (110-134) 120 (105-140) 120 (108-130) .69

DBP mmHg 74 (61-82) 74 (64-80) 70 (60-78) .05

Congestiona 37 (56) 68 (65) 52 (65) .29

NYHA III/IV 9 (14) 23 (22) 30 (38) .001*

CRT 26 (39) 34 (33) 18 (23) .027*

Echocardiographic featuresb

LVEF 31 (26-40) 30 (23-35) 28 (20-35) .03*

DiasLVD 62 (56-67) 64 (57-72) 65 (57-74) .06

SysLVD 49 (42-56) 51 (42-59) 53 (43-62) .07

E/A ratio 0.7 (0.6-1.1) 1.0 (0.7-1.4) 0.9 (0.6-1.9) .06

E/E0 ratio 9.7 (6.3-13.0) 10.9 (6.6-17.4) 11.4 (7.1-19.2) .25

Medical history

Prior MI 22 (33) 39 (38) 34 (43) .25

Atrial fibrillation 23 (35) 43 (41) 31 (39) .66

Diabetes 14 (21) 31 (30) 32 (40) .014*

Hypertension 26 (39) 47 (45) 40 (50) .20

COPD 8 (12) 10 (10) 13 (16) .41

Medication prevalence (%)/average total daily dose (mg)c

Beta-blocker 96%/45 mg 91%/41 mg 84%/47 mg .30d

ACE-I/ARBs 96%/24 mg 93%/25 mg 94%/24 mg .96d

Loop diuretics 85%/77 mg 90%/78 mg 96%/97 mg .15d

MRAs 74%/23 mg 70%/23 mg 65%/23 mg .96d

Cardiac biomarkers

NT-proBNP ng/L 578 (153-1680) 1076 (378-2148) 1682 (866-3529) <.001*

cTnT ng/L 12.4 (7.5-24.8) 16.9 (9.4-32.4) 22.6 (13.7-43.3) <.001*

Renal glomerular indices (plasma)

Creatinine mg/dL 1.10 (0.92-1.26) 1.17 (0.97-1.43) 1.33 (1.04-1.77) <.001*

eGFRmL/min/1.73 m
2 70 (51-79) 58 (44-76) 50 (36-72) <.001*

eGFR<60 21 (32) 57 (55) 52 (65) <.001*

Renal tubular markers (urine)

NAG U/gCr 5.1 (2.7-10.0) 5.7 (3.9-9.1) 6.7 (4.6-9.2) .11

KIM-1 ng/gCr 452 (238-930) 485 (243-882) 555 (256-973) .45

Note: For reasons of uniformity continuous variables are presented as medians (25th-75th percentiles) and categorical variables are presented as n (%); P-

values signify trend across groups and the asterisk indicates P < .05.

Abbreviations: ACE-I, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor blockers; A, peak late filling velocity; BMI, Body mass index;

COPD, chronic obstructive pulmonary disease CRP, C-reactive protein; cTnT, cardiac troponin T; CVA, cerebrovascular accident; DBP, Diastolic blood

pressure; DiasLVD, diastolic left ventricular diameter; E, peak early filling velocity; E0 , early diastolic mitral annular velocity; eGFR, estimated glomerular

filtration rate; KIM-1, kidney injury molecule-1; MI, myocardial infarction; MRA, mineralocorticoid receptor antagonist; NAG, N-acetyl-β-D-

glucosaminidase; NYHA class, New York Heart Association class; SBP, Systolic blood pressure; SysLVD, systolic left ventricular diameter; TIA, transitory

ischemic attack.
aCongestion was considered present if ≥2 symptoms or signs were present at baseline (dyspnea, orthopnea, fatigue, elevated jugular venous pressure,

presence of rales/crackles and pedal oedema).
bBecause of logistic reasons, baseline LVEF, DiasLVD, and SysLVD were available in 74%, E/A ratio in 62%, and E/E0 ratio in 69% of all HFrEF patients.
cTable S3 shows the conversion factors for calculation of total daily dose equivalents of different HF medications.
dP-value for the difference in average total daily dose.
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death (I46), sudden death undefined (R96), or unwitnessed or ill-

described death (R98, R99). Hospitalization for acute or worsened HF

was defined as a hospitalization for an exacerbation of HF symptoms,

in combination with two of the following: BNP or NT-proBNP >3

times the upper limit of normal, signs of worsening HF, such as

pulmonary rales, raised jugular venous pressure or peripheral edema,

increased dose or intravenous administration of diuretics, or adminis-

tration of positive inotropic agents.19

Blood and urine samples were collected at baseline and during

study visits, and were processed and stored at −80�C. Laboratory

TABLE 2 Patient characteristics stratified by creatinine slope

Creatinine stable/decreased (n = 104) Creatinine increased (n = 146) P-valuea

Clinical features

Age years 66 (57-74) 68 (60-77) .18

Men 73 (70) 111 (76) .30

Ischemic etiology 45 (43) 71 (49) .40

BMI kg/m2 26.6 (24.1-30.2) 26.8 (24.4-30.2) .83

Heart rate b.p.m. 68 (59-77) 65 (60-72) .33

SBP mmHg 121 (110-136) 120 (106-132) .26

DBP mmHg 75 (65-80) 70 (60-80) .08

Congestion* 67 (64) 90 (62) .65

NYHA III/IV 29 (28) 33 (23) .34

CRT 35 (34) 43 (30) .48

Echocardiographic featuresb

LVEF 31 (23-40) 29 (23-36) .20

DiasLVD 64 (56-71) 64 (59-72) .47

SysLVD 47 (41-58) 52 (45-60) .043*

E/A ratio 0.8 (0.6-1.3) 0.9 (0.6-1.3) .20

E/E0 ratio 9.6 (5.8-13.3) 11.8 (7.9-19.0) .010*

Medical history

Prior MI 32 (31) 63 (43) .047*

Atrial fibrillation 35 (34) 62 (43) .16

Diabetes 27 (26) 50 (34) .16

Hypertension 41 (39) 72 (49) .12

COPD 9 (9) 22 (15) .13

Medication prevalence (%)/average total daily dose (mg)

Beta-blocker 89%/48 mg 91%/41 mg .32

ACE-I/ARBs 96%/23 mg 93%/25 mg .21

Loop diuretics 89%/63 mg 93%/98 mg .003*

MRAs 71%/25 mg 69%/21 mg .022*

Cardiac biomarkers

NT-proBNP ng/L 894 (279-2158) 1369 (514-2871) .042*

cTnT ng/L 14.3 (8.3-29.4) 20.1 (10.7-38.1) .018*

Renal glomerular indices (plasma)

Creatinine mg/dL 1.32 (1.08-1.67) 1.10 (0.92-1.38) <.001*

eGFRmL/min/1.73 m
2 51 (37-71) 65 (48-82) <.001*

eGFR<60 66 (64) 64 (44) .002*

Renal tubular markers (urine)

NAG, U/gCr 5.5 (3.4-8.5) 6.5 (3.9-9.3) .06

KIM-1, ng/gCr 467 (244-828) 505 (247-995) .21

Note: For description, please see Table 2; P-values signify a trend across groups and the asterisk indicates P < .05.
ap-value for the difference in the average total daily dose.
bBecause of logistic reasons, baseline LVEF, DiasLVD, and SysLVD were available in 74%, E/A ratio in 62%, and E/E0 ratio in 69% of all HFrEF patients.
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personnel was blinded for clinical data. Batch analysis of serum was

performed at Erasmus Medical Center: NT-proBNP was analyzed

using an electrochemiluminescence immunoassay (Roche Diagnos-

tics, Elecsys 2010, Indianapolis, Indiana), cardiac troponin T was also

measured using an electrochemiluminescence immunoassay (Roche

Diagnostics, Elecsys 2010 immunoassay analyzer). Plasma and urine

samples were transported at −80�C to HaemoScan BV, Groningen,

the Netherlands for batch analysis. Creatinine was determined by a

colorimetric test by the Jaffé reaction. Plasma was used undiluted,

and urine was diluted 10 times in water (lower limit of detection

(LLD): plasma 0.14 mg/dL, urine: 1.56 mg/mL). KIM-1 was deter-

mined in urine diluted 50% in 0.1% BSA/PBS buffer, by ELISA (R&D

systems, Minneapolis, Minnesota) (LLD: 0.146 ng/mL). NAG was

determined using a substrate p-nitrophenyl N-acetyl-β-D-

glucosaminidase at pH 4.5 (Sigma, St Louis, Missouri) (LLD: 0.485 U/

L). All urinary biomarkers were normalized to urinary Cr concentra-

tions to correct for concentration or dilution of urine. The glomerular

filtration rate (GFR) was determined by the Chronic Kidney Disease

Epidemiology Collaboration equation that has been validated in HF

patients20 and categorized using K/DOQI guidelines.21

To assess patient-specific slopes (rates of change over time) of

biomarker trajectories, we performed joint modeling (JM) of linear

mixed-effects (LME) and Cox regression models.22 The LME models

estimate the individual biomarker trajectory based on repeated mea-

surements and also correct for biomarkers' sampling variability (for

details, see Figure S2).23 The JM then combines LME with the Cox

regression model to adjust the biomarker trajectory for different

follow-up durations between patients.23 The degree of tubular injury

was ordered according to the slopes of tubular damage biomarkers:

increase in neither, increase in either, and increase in both; WRF was

defined as increasing Cr slope.

For continuous variables, the presence of a linear trend across

different categories of renal tubular damage and WRF was assessed

by analysis of variance or the Kruskal‑Wallis test and categorical vari-

ables were tested by the χ2 trend test. Covariates that were uni-

variably associated with tubular damage or WRF (exploratory P < .10)

TABLE 3 Independent predictors of renal tubular damage and
worsening renal function

Multivariable model*

OR (95%CI) P-value

Renal tubular damage (dependent

variable)a

NT-proBNP (per doubling) 1.26 (1.07-1.49) P = .006

eGFR (per 10 mL/min/1.73 m2 decrease) 1.16 (1.03-1.32) P = .015

WRF (dependent variable)c

Loop diuretics (per 40 mg furosemide

equivalent. dose increase)

1.30 (1.07-1.59) P = .010

MRAs (per 25 mg spironolactone

equivalent. dose decrease)

1.85 (1.10-3.09) P = .019

eGFR (per 10 mL/min/1.73 m2 decrease) 0.73 (0.63-0.85) P < .001

Note: OR indicates odds ratio for having a more severe tubular damage or

WRF; 95%CI indicates 95% confidence interval for the corresponding OR;

eGFR indicates estimated glomerular filtration rate, MRAs indicates

mineralocorticoid receptor antagonists.
aCovariates that were found to be different across categories of tubular

damage with P < .10 (see Table 1) were entered into a multivariable ordi-

nal regression model and those were: age, NYHA class, diabetes, use of

cardiac resynchronization therapy (CRT), diastolic blood pressure, NT-

proBNP, cTnT, and eGFR.
b*Represents only covariates with P-value <.05 were presented in the

table.
cCovariates that were found to be different between WRF patient and

non-WRF patients with P < .10 (see Table 2) were entered into a

multivariable binary regression model and those were: diastolic blood

pressure, NT-proBNP, hs-cTnT, eGFR, urinary NAG, prior myocardial

infarction, loop diuretics and MRAs doses.

F IGURE 1 Distributions of slopes of renal biomarkers prior to
study endpoints. Notes: X-axis displays number of patients who
experienced the event (red) and those who did not (blue), Y-axis
displays the estimated slopes on the continuous scale, where positive
numbers correspond to increasing slopes and negative numbers
correspond to decreasing slopes. t test was used test the average
difference between patient with and without event
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F IGURE 2 Legend on next page.
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were entered into a multivariable logistic regression model applying

proportional odds ordinal regression or binary logistic regression.

To investigate endpoint-free rates, we used the two-sided Breslow

test and the Breslow method to estimate event-time distributions. The

Cox regression model was performed to assess hazard ratios (HR) with

95% confidence intervals (95%CI) for study endpoints.

Statistical adjustments were performed by using biomarkers of

interest plus age, sex, diabetes, atrial fibrillation, NYHA class, diuretics,

systolic blood pressure, estimated glomerular filtration rate (eGFR)

(only for tubular damage markers), and biomarkers of myocardial

stretch and damage NT-proBNP and hs-cTnT.

Data on all variables were complete, except for systolic blood

pressure, which was missing in <5% of patients and for which imputa-

tions were applied using patients' clinical and outcome data.

All tests were two-tailed and P-values <.05 were considered sta-

tistically significant. All analyses were performed with SPSS (SPSS

25.0; IBM Corp., Armonk, NewYork),24 and R25 using the package

JMbayes.26

3 | RESULTS

Table S1 summarizes the baseline characteristics of the 250 HFrEF

patients. During a median of 2.2 (IQR: 1.4-2.5) years, we collected a

median of nine blood 5-10 and eight urine 5-10 samples per patient.

Table 1 shows that patients with greater tubular damage during

follow-up, had higher baseline NT-proBNP, cardiac troponin-T, and Cr

levels (ie, lower eGFR); lower left ventricular (LV) ejection fraction, more

frequently diabetes, NYHA class III/IV, and cardiac resynchronization

therapy (CRT), and were older. After multivariable adjustments, higher

baseline NT-proBNP and lower eGFR remained independent predictors

of more severe tubular damage (per doubling of NT-proBNP adjusted

odds ratio, adj. OR, 1.26 [95%CI 1.07-1.49], P = .006; and per

10 mL/min/1.73 m2 eGFR decrease 1.16 [1.03-1.32], P = .015) (Table 3).

Table 2 shows that patients with Cr incline during follow-up had

higher baseline NT-proBNP, cardiac troponin-T and higher eGFR,

higher systolic LV diameter, and E/E' ratio, more frequently a history

of myocardial infarction, and were on higher loop diuretic doses and

lower mineralocorticoid receptor antagonist (MRA) doses. After multi-

variable adjustments, higher eGFR levels and higher loop diuretic

doses, and lower MRA doses, remained independent predictors of Cr

incline (per 10 mL/min/1.73 m2 eGFR decrease: OR 0.73 [95%CI:

0.63-0.85], P < .001; per 40 mg furosemide equivalent dose increase:

1.30 [1.07-1.59], P = .010; and per 25 mg spironolactone equivalent

dose decrease: 1.85 [1.10-3.09], P = .019) (Table 3).

Of the 250 HFrEF patients, 66 (26%) reached the endpoint:

53 patients were rehospitalized for acute or worsened HF, 8 died of

cardiovascular causes, 2 underwent LVAD-placement, and 3 underwent

heart transplantation. Figure 1 shows that patients who experienced

the endpoint had significantly higher slopes of urinary NAG than

endpoint-free patients (mean ± SD: 0.27 ± 0.28 vs −0.02 ± 0.27

ln[U/gCr]/year, P < .001) and KIM-1 (0.22 ± 0.36 vs −0.05 ± 0.24

ln[ng/gCr]/year, P < .001), and plasma Cr (0.20 ± 0.35 vs 0.01 ±

0.17 ln[mg/dL]/year, P < .001). Lower baseline eGFR was positively

associated with greater tubular damage but inversely associated

with WRF during follow-up (Table S2).

Seventy-four percentage of HFrEF patients experienced incline

in either tubular damage biomarker during follow-up. Of those, 44%

of patients had both tubular biomarkers rising prior to the endpoint

or last sampling moment. Figure 2A shows that endpoint-free rates

were lowest when both tubular damage biomarkers were increased,

followed by the rates when either marker was increasing (P for

trend <.001). HR were almost four times higher in patients in whom

either tubular damage marker was increasing and eight times higher

if both were increasing during follow-up (NAG or KIM-1 slope

increased: adjusted hazard ratios, adj. HR 3.7 [95%CI: 1.1-12.6],

P = .034; NAG and KIM-1 slopes increased: 8.4 [2.6-27.9],

P < .001). These estimates were independent of the patients' clinical

characteristics, baseline eGFR, and cardiac biomarkers (NT-proBNP

and troponin T).

Fifty-eight percent of HFrEF patients experienced incline in Cr

levels during follow-up. Figure 2B shows that patients with increasing

plasma Cr slope had lower endpoint-free rates than their counterparts

(P = .018). The HR in these patients were also significantly higher than

in those in whom Cr remained stable or decreased (adj. HR 1.9

[1.1-3.4], P = .027).

Eighteen percent of HFrEF patients experienced deteriorating pat-

terns of both urinary tubular biomarkers as well as Cr, while 31% of

patients had at least one tubular biomarker rising without a change in Cr,

and only 10% of patients had neither biomarker worsening during

follow-up (for details, see Figure 2C). Figure 2C displays that when tubu-

lar damage markers were stable or improving, Cr incline did not affect

endpoint-free rates. However, if either NAG or KIM-1 slope increased,

endpoint-free rates decreased. Finally, the lowest endpoint-free rates

were in patients who had increasing slopes of all three renal biomarkers

(P for trend <.001).

F IGURE 2 Kaplan–Meier survival curves stratified by slopes of renal biomarkers. Notes: Shown are Kaplan–Meier (KM) curves for the cumulative

event-free survival of the composite of HF-rehospitalization, cardiac death, LVAD placement, and heart transplantation. A, KM curves are stratified by
whether both NAG and KIM-1 slopes were decreasing/stable (blue); either NAG or KIM-1 slope was increasing (red); or both NAG and KIM-1 slopes were
increasing (green); B, KM curves are stratified by whether Cr slope was decreasing/stable (blue) or increasing (red). C, KM curves are stratified by whether
slopes of all three renal biomarkers were decreasing/stable (blue); NAG and KIM-1 slopes were decreasing/stable, but creatinine slope was increasing
(red); either NAG or KIM-1 slope was increasing but creatinine slope was decreasing/stable (green); either NAG or KIM-1 slope was increasing, and
creatinine slope was increasing (orange); and slopes of all three biomarkers were increasing (purple). Hazard ratios (HR) were adjusted for age, sex,
diabetes, atrial fibrillation, NYHA class, diuretics, systolic blood pressure, eGFR (only for tubular damage biomarkers), NT-proBNP, and hs-cTnT
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4 | DISCUSSION

To our best knowledge, this study is the first to identify clinical deter-

minants of progressive renal tubular damage in CHF. Of note, these

determinants differ from those found for WRF, which strengthens the

recommendation that glomerular and tubular compartment should be

jointly assessed. This study also displays that patients in whom both

renal compartments deteriorate during outpatient follow-up have the

lowest endpoint-free survival.

Renal function may act as a “barometer” of the severity of

CHF.27,28 However, because of the multifactorial nature of cardio-

renal interactions, merely assessing the glomerular function may be

suboptimal for decision-making. Our study confirms this and provides

additional evidence for the notion that each aspect of the kidney (glo-

merular and tubular) provides incremental prognostic information, and

together they may further identify higher-risk CHF individuals. These

kidney-specific signals may therefore help physicians to better and

timely target medical therapy before the future event occurs.

Based on our findings, we could speculate that “renoprotective”

treatment targeted at the tubules may be even more effective than treat-

ment simply aiming at improving only eGFR or Cr values. To this end, we

have previously found that higher ACE-inhibitor/ARBs doses during

follow-up were associated with less renal tubular damage together with

less cardiac impairment (as assessed by NT-proBNP and troponin

levels).29 However, interventional studies on these tubular damage

markers are needed to provide definite answers in this matter.

Our findings suggest that patients who have reduced eGFR already

at baseline are more susceptible to tubular injury during follow-up than

those with higher baseline eGFR (ie, greater renal functional capacity).

This phenomenon may potentially be attributed to the “work-overload”

in residual nephrons to compensate renal function in patients who had

fewer functioning nephrons available.30 Compensatory hyperfiltration in

the rest of nephrons may eventually exceed tubular adaption to hypo-

perfusion leading to tubulointerstitial hypoxic damage.31,32 These intrin-

sic adaptations of tubules and peritubular capillaries to renal injury have

been recognized as important factors for glomerulotubular balance to

parallel glomerular filtration rate of a nephron.33

Moreover, these patients more frequently had diabetes which, on its

part, may also have contributed to tubular injury. Similarly, other clinical

determinants such as aging kidneys and severity of HF (higher cardiac

markers and NYHA class, lower LV ejection fraction, and CRT) suggest

that factors that are related to more severe HF also cause tubule-specific

renal injury. Importantly, renal tubular biomarkers entailed unfavorable

outcomes even in patients with apparently stable glomerular function

during follow-up. Thus, the rise in urinary tubular biomarkers may indi-

cate subclinical renal impairment even before renal function itself

declines. Finally, our findings suggest that simultaneous assessment

of NAG and KIM-1 translates into better risk stratification in terms of

survival rates than assessment of either marker alone.

Higher doses of loop diuretics and lower MRA doses were iden-

tified in patients with WRF and are supported by previous stud-

ies.1,34 WRF was found to be associated with higher baseline eGFR

which is also supported by several previous studies.35-37 However,

this finding is inconsistent with the general opinion that WRF

(defined as delta Cr >0.03 mg/dL) occurs more frequently in CHF

patients that have impaired GFR already at baseline.38 One explana-

tion for this discrepancy may be that closer monitoring of patients

who already had impaired GFR could have also increased the likeli-

hood of finding WRF in these patients,34 and particularly if sampling

was not fixed but left at the discretion of the treating physician.39 As

for our study, the observations were made using more than twice as

many repeated measurements as in each of the previous studies,

samples were collected prospectively at fixed time intervals defined

by the study protocol. This further strengthens our suggestion that

WRF should not be disregarded in CHF patients with relatively intact

renal function.

Several limitations merit consideration. First, this study lacked

direct GFR measurement. Second, we cannot comment on the effects

of glomerular permeability on clinical outcomes since proteinuria was

not measured. Third, causal inference is limited by the observational

nature of our study. Although trials on this subject are still lacking, the

repeated-measures design of this study allows for stronger claims of

true associations than previous studies do.

5 | CONCLUSIONS

Slopes of tubular damage andWRF biomarkers had different clinical deter-

minants. Both predicted clinical outcome, but this associationwas stronger

for tubular injury. Prognostic effects of both appeared independent and

additive. These findings are of particular interest since in current clinical

practice the degree of tubular injury usually remains undetermined.
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