19 research outputs found

    Practical strategies to stabilize a nanosatellite platform with a space camera and integrated mechanical parts

    Get PDF
    The growth and speed of nanosatellite capabilities has led to an increasing demand on the respective attitude control systems. Typically, nanosatellites utilise minaturised reaction wheels for 3-axis stabilisation/manoeuvres, which are desaturated using magnetorquers. Small space telescopes have been deployed from nanosatellites in the past with capability ever increasing to push the limit of detectors. Previous work has established the feasibility of achieving GSD of 0.7 m in low Earth orbit for a 2.5 U CubeSat using deployable mirrors from a 400 km orbit. The dynamic model of nanosatellite with the telescope + the deployed mirror systems will be built in this research work. The deployed mirror system will use a diamond turned mirror - it's an off axis paraboloid. The mirror would be light-weighted as much as possible, i.e. the back surface would be carved away with good thermal stability. The mechanisms for mirror systems may use methods like minature geared motors, stiction motors and shape memory alloy hinges. The sensoring and directing of the mirror surface will use an image based detection methods. A closed loop control of the mirror position will be used to iterate to a fully aligned system. This work also considers control strategies to stabilise such a platform against the effects of firstly, the external aerodynamics and secondly, any internal disturbances induced by and the movement of focussing elements. A pointing accuracy of 5-10 arcsec for a 20 min observation over the UK is targeted at a baseline orbit of 350 km sun-synchronous. Following an initial baseline to establish current state-of-art both based on in-orbit performance and off-the-shelf subsystems available to the market within the constraints of a 3U nanosatellite system, a number of feed-forward/feedback control loops and sensor systems are studied to determine a simple process for compensating for the motion

    Co-ordinated Airborne Studies in the Tropics (CAST)

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1The Co-ordinated Airborne Studies in the Tropics (CAST) project is studying the chemical composition of the atmosphere in the Tropical Warm Pool region to improve understanding of trace gas transport in convection. The main field activities of the CAST (Co-ordinated Airborne Studies in the Tropics) campaign took place in the West Pacific in January/February 2014. The field campaign was based in Guam (13.5°N, 144.8°E) using the UK FAAM BAe-146 atmospheric research aircraft and was coordinated with the ATTREX project with the unmanned Global Hawk and the CONTRAST campaign with the Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical West Pacific as well as the importance of trace gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights between 1°S-14°N and 130°-155°E. It was used to sample at altitudes below 8 km with much of the time spent in the marine boundary layer. It measured a range of chemical species, and sampled extensively within the region of main inflow into the strong West Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project focussing on the design and operation of the West Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on the Global Hawk in February/March 2015.CAST is funded by NERC and STFC, with grant NE/ I030054/1 (lead award), NE/J006262/1, NE/J006238/1, NE/J006181/1, NE/J006211/1, NE/J006061/1, NE/J006157/1, NE/J006203/1, NE/J00619X/1, and NE/J006173/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1). P. I. Palmer acknowledges his Royal Society Wolfson Research Merit Award. The BAe-146-301 Atmospheric Research Aircraft is flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements, which is a joint entity of the Natural Environment Research Council and the Met Office. The authors thank the staff at FAAM, Directflight and Avalon Aero who worked so hard toward the success of the aircraft deployment in Guam, especially for their untiring efforts when spending an unforeseen 9 days in Chuuk. We thank the local staff at Chuuk and Palau, as well as the authorities in the Federated States of Micronesia for their help in facilitating our research flights. Special thanks go to the personnel associated with the ARM facility at Manus, Papua New Guinea without whose help the ground-based measurements would not have been possible. Thanks to the British Atmospheric Data Centre (BADC) for hosting our data and the NCAS Atmospheric Measurement Facility for providing the radiosonde and ground-based ozone equipment. Chlorophyll-a data used in Figure 1 were extracted using the Giovanni online data system, maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of this data set. Finally we thank many individual associated with the ATTREX and CONTRAST campaigns for their help in the logistical planning, and we would like to single out Jim Bresch for his excellent and freely provided meteorological advice

    Achieving Global Awareness via Advanced Remote Sensing Techniques on 3U CubeSats

    Get PDF
    The cost models for return on investment for constellations of large spacecraft providing high quality, high temporal resolution Earth observation data are not currently sustainable. Even with economies of scale, the costs involved in the materials and launch of the spacecraft alone will result in an expensive final product only accessible for customers of considerable means to afford the data. However, advances in the miniaturization of spacecraft systems for high resolution, high quality imagery from nanosatellites/CubeSats make the prospect of constellations of 50+ spacecraft in complimentary orbits an affordable and potentially highly profitable concept. In addition, security, disaster relief and environmental monitoring users, amongst others, desperately need high temporal resolution Earth observation data with global access. Climate change impacts, resource conflict and geopolitically driven cross-border movement, all tax the abilities of remote sensing systems to acquire timely data. Nanosatellites deployed in constellations can offer global coverage from a very low cost package, particularly the CubeSat standard. Further, the availability of low cost imaging equipment (CCDs, COTS optics and deployment mechanisms) has shown that suitable cameras for delivering high resolution can be built in a very small package, compatible with the limited envelope of the CubeSat standard. This paper will discuss the outcomes of two recent studies and the ability of current technologies to provide global awareness in two key Earth observation areas; sub-1m resolution, high resolution visible and near infrared imagery for bushfire early detection. The paper will show that these technologies are not only feasible but could be ready for on-orbit demonstration within the next 2 years

    A Segmented Deployable Primary Mirror for Earth Observation from a CubeSat Platform

    Get PDF
    The aperture size is the primary limitation on the resolving power of an optical system, so deployable optical systems provide a means of improving the spatial sampling that can be provided within a fixed launch volume. The UK ATC has been developing a CubeSat sized deployable optical system that can co-phase its primary aperture based on image metrics derived from the science scene. Discussed are the telescope optical design and tolerances, the mechanical design of the primary optic, together with the deployment and actuation systems, and the image metrics that are used to co-phase the system. A breadboard optical system has been designed, manufactured and tested and the results are presented and used to derive operational feasibility and next steps towards a in orbit demonstrator
    corecore