278 research outputs found

    Renormalization Group theory outperforms other approaches in statistical comparison between upscaling techniques for porous media

    Get PDF
    Determining the pressure differential required to achieve a desired flow rate in a porous medium requires solving Darcy's law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the permeability coefficient is sampled at high spatial resolution, which makes solving Darcy's equation numerically prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to fore the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to characterize the relative success of upscaling methods on a large sample of permeability coefficients that are above the percolation threshold. We introduce a new technique based on Mode-Elimination Renormalization-Group theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled using other methods, we find that MG is consistently more accurate, particularly so due to its ability to address the tensorial nature of the coefficients. MG places a low computational demand, in the manner that we have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that approach or are beyond the percolation threshold.Comment: 15 pages, 7 figures, Physical Review

    The impedance boundary condition for acoustics in swirling ducted flow

    Get PDF
    The acoustics of a straight annular lined duct containing a swirling mean flow is considered. The classical Ingard–Myers impedance boundary condition is shown not to be correct for swirling flow. By considering behaviour within the thin boundary layers at the duct walls, the correct impedance boundary condition for an infinitely thin boundary layer with swirl is derived, which reduces to the Ingard–Myers condition when the swirl is set to zero. The correct boundary condition contains a spring-like term due to centrifugal acceleration at the walls, and consequently has a different sign at the inner (hub) and outer (tip) walls. Examples are given for mean flows relevant to the interstage region of aeroengines. Surface waves in swirling flows are also considered, and are shown to obey a more complicated dispersion relation than for non-swirling flows. The stability of the surface waves is also investigated, and as in the non-swirling case, one unstable surface wave per wall is found

    One Health governance: Lessons from Tanzania

    Get PDF

    The dust properties and physical conditions of the interstellar medium in the LMC massive star forming complex N11

    Full text link
    We combine Spitzer and Herschel data of the star-forming region N11 in the Large Magellanic Cloud to produce detailed maps of the dust properties in the complex and study their variations with the ISM conditions. We also compare APEX/LABOCA 870um observations with our model predictions in order to decompose the 870um emission into dust and non-dust (free-free emission and CO(3-2) line) contributions. We find that in N11, the 870um can be fully accounted for by these 3 components. The dust surface density map of N11 is combined with HI and CO observations to study local variations in the gas-to-dust mass ratios. Our analysis leads to values lower than those expected from the LMC low-metallicity as well as to a decrease of the gas-to-dust mass ratio with the dust surface density. We explore potential hypotheses that could explain the low observed gas-to-dust mass ratios (variations in the XCO factor, presence of CO-dark gas or of optically thick HI or variations in the dust abundance in the dense regions). We finally decompose the local SEDs using a Principal Component Analysis (i.e. with no a priori assumption on the dust composition in the complex). Our results lead to a promising decomposition of the local SEDs in various dust components (hot, warm, cold) coherent with that expected for the region. Further analysis on a larger sample of galaxies will follow in order to understand how unique this decomposition is or how it evolves from one environment to another.Comment: 24 pages, 16 figures, accepted for publication in MNRA

    The applicability of FIR fine-structure lines as Star Formation Rate tracers over wide ranges of metallicities and galaxy types

    Get PDF
    We analyze the applicability of far-infrared fine-structure lines [CII] 158 micron, [OI] 63 micron and [OIII] 88 micron to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and compare with a broad sample of galaxies of various types and metallicities in the literature. We study the trends and scatter in the relation between the SFR (as traced by GALEX FUV and MIPS 24 micron) and far-infrared line emission, on spatially resolved and global galaxy scales, in dwarf galaxies. We assemble far-infrared line measurements from the literature and infer whether the far-infrared lines can probe the SFR (as traced by the total-infrared luminosity) in a variety of galaxy populations. In metal-poor dwarfs, the [OI] and [OIII] lines show the strongest correlation with the SFR with an uncertainty on the SFR estimates better than a factor of 2, while the link between [CII] emission and the SFR is more dispersed (uncertainty factor of 2.6). The increased scatter in the SFR-L([CII]) relation towards low metal abundances, warm dust temperatures, large filling factors of diffuse, highly ionized gas suggests that other cooling lines start to dominate depending on the density and ionization state of the gas. For the literature sample, we evaluate the correlations for a number of different galaxy populations. The [CII] and [OI] lines are considered to be reliable SFR tracers in starburst galaxies, recovering the star formation activity within an uncertainty of factor 2. [Abridged]Comment: 35 pages, 13 figures, accepted for publication in A&A on May 7th 201

    Dust in the Extremely Metal-Poor Blue Compact Dwarf Galaxy IZw18: The Spitzer Mid-Infrared View

    Get PDF
    IZw18, a blue compact dwarf (BCD) galaxy with the 2nd lowest metallicity measured in a star-forming object, has been observed with all three instruments on board the Spitzer Space Telescope. We present the deepest 5-36 micron mid-infrared (mid-IR) spectrum of this galaxy as yet obtained, as well as 3.6 to 70 micron imaging results. As with SBS0335-052E, another BCD with similar metallicity, IZw18 shows no detectable emission from polycyclic aromatic hydrocarbons (PAHs). However, the continuum emission, from 15 to 70 micron, of IZw18 has a much steeper slope, more characteristic of a typical starburst galaxy of solar abundance. The neon abundance as measured from the infrared fine-structure lines is ~1/23 Z_sun, and the sulfur abundance is ~ 1/35 Z_sun, generally consistent with the nebular oxygen abundance of 1/30 Z_sun derived from optical lines. This suggests that the extinction to the infrared emitting regions of this galaxy is low, also in agreement with the optical Balmer line ratios.Comment: Accepted by ApJ, 7 pages, 5 figure

    Dissecting the Mid-Infrared Heart of M83 with JWST

    Full text link
    We present a first look at the MRS observations of the nucleus of the spiral galaxy M83, taken with MIRI onboard JWST. The observations show a rich set of emission features from the ionized and warm molecular gas, as well as traces of the dust properties in this highly star forming environment. To begin dissecting the complex processes taking place in this part of the galaxy, we divide the nucleus observations into four different regions. We find that the strength of the emission features appears to strongly vary in all four regions, with the south-east region displaying the weakest features tracing both the dust continuum and ISM properties. Comparison between the cold molecular gas traced by the 12^{12}CO (1-0) transition with ALMA and the H2_2 0-0 S(1) transition showed a similar spatial distribution throughout the nucleus. This is in contrast to the distribution of the much warmer H2_2 emission from the S(7) transition found to be concentrated mainly around the optical nucleus. We modeled the H2_2 excitation using the rotational emission lines and estimate a total molecular gas mass accounting for the warm H2_2 component of M(>>50 K)H2_{\rm H_{2}} = 59.33 (±4.75\pm 4.75) ×\times 106^{6} M_{\odot}. We compared this value to the total molecular gas mass inferred by probing the cold H2_2 gas through the 12^{12}CO (1-0) emission, M(CO)H2_{\rm H_{2}} = 14.99 ×\times 106^{6} M_{\odot}. Our findings indicate that \sim75\% of the total molecular gas mass in the core of M83 is contained in the warm H2_2 component. We also identify [OIV]25.89 μ\mum and [FeII]25.99 μ\mum emission (indicative of shocks) in all four nuclear regions with the strongest emission originating from the north-west section. We propose that the diffuse [FeII]25.99 μ\mum emission is an indication of the combined effects of both the collective supernova explosions and the starbursts themselves.Comment: 13 pages, 3 Tables, 8 Figures, to be submitted to Ap

    Novel Multi-Linear Quantitative Brain Volume Formula For Manual Radiological Evaluation Of Brain Atrophy

    Get PDF
    This research article published by Research Square, 2020The brain is a dynamic organ that develops and involutes in volume. The process of volume loss known as brain atrophy commonly occurs in elderly. However, some conditions have been implicated to provoke this paradoxical process in childhood and making it important to have methods and techniques of quantifying brain volume. Automated quantitative methods are very important in brain atrophy assessment but these tools have limited availability in developing countries. The simplified linear radiological methods are poorly reproducible and hence there is a need to develop an alternative formula that is reproducible and applicable at all healthcare levels
    corecore