114 research outputs found

    Idiopathic Calcium Nephrolithiasis: A Review of Pathogenic Mechanisms in the Light of Genetic Studies

    Get PDF
    Background: Calcium nephrolithiasis is a multifactorial disease with a polygenic milieu. Association studies identified genetic polymorphisms potentially implicated in the pathogenesis of calcium nephrolithiasis. The present article reviews the mechanisms of calcium stone formation and the potential contribution of gene polymorphisms to lithogenic mechanisms. Summary: Endoscopy observations suggested that precipitation of calcium-oxalate on the Randall's plaque at the papilla surface may cause idiopathic calcium-oxalate stones. The Randall's plaque is a hydroxyapatite deposit in the interstitium of the kidney medulla, which resembles a soft tissue calcification. Conversely, calcium-phosphate stones may develop from crystalline deposits located at the tip of the Bellini duct. Polymorphisms of eleven genes have been associated with stones in genome-wide association studies and replicated candidate-gene association studies: VDR, SLC34A1, SLC34A4, CLDN14, and CaSR genes coding for proteins regulating tubular phosphate and calcium reabsorption; CaSR, MGP, OPN, PLAU, and UMOD genes coding for proteins preventing calcium salt precipitation; AQP1 gene coding for a water channel in the proximal tubule. The renal activity of the last gene, DGKH, is unknown. Polymorphisms in these genes may predispose to calcium-oxalate and -phosphate stones by increasing the risk of calcium-phosphate precipitation in the tubular fluid. Key Messages: Genetic findings suggest that tubular fluid supersaturation with respect to calcium and phosphate predisposes to calcium-oxalate stones by triggering cellular mechanisms that lead to the Randall's plaque formation. © 2014 S. Karger AG, Base

    Training Effects on ROS Production Determined by Electron Paramagnetic Resonance in Master Swimmers

    Get PDF
    Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P<0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82±0.66 versus 3.28±0.66 µmol·min−1) was observed. HIDT increased peak oxygen consumption (36.1±4.3 versus 40.6±5.7 mL·kg−1·min−1 PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (−20%) and after IE (−25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function

    Hyperbaric oxygen therapy ameliorates osteonecrosis in patients by modulating inflammation and oxidative stress

    Get PDF
    Early stages of avascular necrosis of the femoral head (AVNFH) can be conservatively treated with hyperbaric oxygen therapy (HBOT). This study investigated how HBOT modulates inflammatory markers and reactive oxygen species (ROS) in patients with AVNFH. Twenty-three male patients were treated with two cycles of HBOT, 30 sessions each with a 30 days break between cycles. Each session consisted of 90 minutes of 100% inspired oxygen at 2.5 absolute atmospheres of pressure. Plasma levels of tumor necrosis factor alfa (TNF-α), interleukin 6 (IL-6), interleukin 1 beta (IL-1β) and ROS production were measured before treatment (T0), after 15 and 30 HBOT sessions (T1 and T2), after the 30-day break (T3), and after 60 sessions (T4). Results showed a significant reduction in TNF-α and IL-6 plasma levels over time. This decrease in inflammatory markers mirrored observed reductions in bone marrow edema and reductions in patient self-reported pain

    Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motoneurons, while non-neuronal cells may contribute to disease onset and progression. Most ALS cases are characterized by the mislocalization and aggregation of the TAR DNA binding protein 43 (TDP-43) in affected cells. TDP-43 aggregates contain C-terminal TDP-43 fragments of 35 kDa (TDP-35) and 25 kDa (TDP-25) and have been mainly studied in motoneurons, while little is currently known about their rate of accumulation and clearance in myoblasts. Here, we performed a comparative study in immortalized motoneuronal like (NSC34; i-motoneurons) cells and stabilized myoblasts (C2C12; s-myoblasts) to evaluate if these two cell types differentially accumulate and clear TDP forms. The most aggregating specie in i-motoneurons is the TDP-25 fragment, mainly constituted by the \u201cprion-like\u201d domain of TDP-43. To a lower extent, TDP-25 also aggregates in s-myoblasts. In both cell types, all TDP species are cleared by proteasome, but TDP-25 impairs autophagy. Interestingly, the routing of TDP-25 fragment to proteasome, by overexpressing BAG1, or to autophagy, by overexpressing HSPB8 or BAG3 decreased its accumulation in both cell types. These results demonstrate that promoting the chaperone-assisted clearance of ALS-linked proteins is beneficial not only in motoneurons but also in myoblasts

    The Elephant in the Room: A Cross-Sectional Study on the Stressful Psychological Effects of the COVID-19 Pandemic in Mental Healthcare Workers

    Get PDF
    Despite extensive research on COVID-19’s impact on healthcare workers, few studies have targeted mental health workers (MHWs) and none have investigated previous traumatic events. We investigated psychological distress in MHWs after the first lockdown in Italy to understand which COVID-19, sociodemographic, and professional variables represented greater effects, and the role of previous trauma. The survey included sociodemographic and professional questions, COVID-19 variables, and the questionnaires Life Events Checklist for DSM-5 (LEC-5), Impact of Event Scale—Revised (IES-R), and Depression Anxiety Stress Scales 21 (DASS-21). On the 271 MHWs who completed the survey (73.1% female; mean age 45.37), we obtained significant effects for contagion fear, experience of patients’ death, increased workload, and worse team relationship during the first wave. Nurses were more affected and showed more post-traumatic stress symptoms, assessed by IES-R, and more depressive, anxiety, and stress symptoms, assessed by DASS-21. The strongest risk factors for distress were greater age, professional role, increased workload, worse team relationship, and separation from family members. Previous experience of severe human suffering and unwanted sexual experiences negatively impacted IES-R and DASS-21 scores. Being a psychiatrist or psychologist/psychotherapist and good team relationships were protective factors. Recent but also previous severe stressful events might represent relevant risk factors for distress, reducing resilience skills. Identifying vulnerable factors and professional categories may help in the development of dedicated measures to prevent emotional burden and support psychological health. Highlights: Psychological distress in mental health workers in the COVID-19 pandemic is more frequent in nurses, who experience more depression, anxiety, and post-traumatic stress symptoms. Previous and recent stressful events are risk factors for distress and should guide intervention strategies

    LGR4 deficiency results in delayed puberty through impaired Wnt/beta-catenin signaling

    Get PDF
    The initiation of puberty is driven by an upsurge in hypothalamic gonadotropin-releasing hormone (GnRH) secretion. In turn, GnRH secretion upsurge depends on the development of a complex GnRH neuroendocrine network during embryonic life. Although delayed puberty (DP) affects up to 2% of the population, is highly heritable, and is associated with adverse health outcomes, the genes underlying DP remain largely unknown. We aimed to discover regulators by whole-exome sequencing of 160 individuals of 67 multigenerational families in our large, accurately phenotyped DP cohort. LGR4 was the only gene remaining after analysis that was significantly enriched for potentially pathogenic, rare variants in 6 probands, Expression analysis identified specific Lgr4 expression at the site of GnRH neuron development. LGR4 mutant proteins showed impaired Wnt/beta-catenin signaling, owing to defective protein expression, trafficking, and degradation. Mice deficient in Lgr4 had significantly delayed onset of puberty and fewer GnRH neurons compared with WT, whereas lgr4 knockdown in zebrafish embryos prevented formation and migration of GnRH neurons. Further, genetic lineage tracing showed strong Lgr4-mediated Wnt/beta-catenin signaling pathway activation during GnRH neuron development. In conclusion, our results show that LGR4 deficiency impairs Wnt/beta-catenin signaling with observed defects in GnRH neuron development, resulting in a DP phenotype.Peer reviewe

    A Conformation Variant of p53 Combined With Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages

    Get PDF
    © 2020 by the authors. Li-censee MDPI, Basel, Switzerland. Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease man-agement. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation rec-ognized by the antibody 2D3A8, also named Unfolded p53 (U-p532D3A8+), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p532D3A8+ plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ+—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p532D3A8+ plasma level as a promising additional candidate blood-based biomarker for AD
    • …
    corecore