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Hyperbaric oxygen therapy ameliorates osteonecrosis in patients by modulating
inflammation and oxidative stress

Gerardo Boscoa, Giuliano Vezzania, Simona Mrakic Spostab, Alex Rizzatoa, Garrett Entenc , Abdullah Abou-samrad,
Sandro Malacridaa, Silvia Quartesana, Alessandra Vezzolib and Enrico Camporesic

aEnvironmental Physiology Lab, Department of Biomedical Sciences, University of Padova, Padua, Italy; bCNR Institute of Bioimaging and
Molecular Physiology, Segrate (Milano), Italy; cDepartment of Anesthesiology, TEAMHealth Research Institute, TGH, Tampa, FL, USA; dMorsani
College of Medicine, University of South Florida, Tampa, FL, USA

ABSTRACT
Early stages of avascular necrosis of the femoral head (AVNFH) can be conservatively treated with hyperbaric
oxygen therapy (HBOT). This study investigated how HBOT modulates inflammatory markers and reactive
oxygen species (ROS) in patients with AVNFH. Twenty-three male patients were treated with two cycles of
HBOT, 30 sessions each with a 30 days break between cycles. Each session consisted of 90minutes of 100%
inspired oxygen at 2.5 absolute atmospheres of pressure. Plasma levels of tumor necrosis factor alfa (TNF-a),
interleukin 6 (IL-6), interleukin 1 beta (IL-1b) and ROS production were measured before treatment (T0), after
15 and 30 HBOT sessions (T1 and T2), after the 30-day break (T3), and after 60 sessions (T4). Results showed
a significant reduction in TNF-a and IL-6 plasma levels over time. This decrease in inflammatory markers mir-
rored observed reductions in bone marrow edema and reductions in patient self-reported pain.
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Introduction

Avascular Necrosis of the femoral head (AVNFH) is a musculoskel-
etal condition resulting from reduced blood perfusion of the bone
tissue. The natural progression of the disease often results in
degenerative joint disease or complete joint dissolution1.
Pathophysiology of AVNFH can be a result of both traumatic and
atraumatic factors2. Currently, AVNFH is typically treated using
more invasive interventions such as core decompression or total
hip replacement. Ongoing studies are examining new avenues for
more conservative treatments, one of which is hyperbaric oxygen
therapy (HBOT). HBOT has been found to be a safe and effective
therapeutic modality for management of patients with early stages
of AVNFH, reducing self-reported pain scores, localized edema,
and lesion size upon radiographic imaging3,4.

While the mechanism of action underlying the observed thera-
peutic effects of HBOT is not fully understood, it is known that the
physio-chemistry that drives the action is a result of two factors:
100% inspired oxygen and exposure to elevated atmospheric pres-
sure. Increased environmental pressure results in a higher number
of molecules diffusing from the alveoli into the capillaries in the
lungs. This coupled with 100% inspired oxygen results in a higher
level of oxygen dissolved in the plasma. As a result, more oxygen
is then diffused or transported to the surrounding body tissues5.

A proposed mechanism of action for HBOT is the resulting
increase in reactive oxygen species (ROS) formation which serve as
signaling molecules for multiple intracellular cascades6–8. A rat
model developed by Asano et al. showed that HBOT elevated lev-
els of basic fibroblast growth factor, hepatocyte growth factor,
vascular endothelial growth factor, and growth response protein-1
stimulating angiogenesis and increasing blood perfusion in

ischemic hind limbs9. Similar tissue regenerative properties were
seen by Milovanova et al. who demonstrated the ability of HBOT
to stimulate vasculogenic stem cell growth and differentiation10.
The increase in these protein levels and differentiation of cells
may be linked to ROS’s ability to initiate downstream changes in
several transduction cascades such as stem/progenitor cell mobil-
isation from bone marrow and lowering monocyte chemokine syn-
thesis, which ultimately lead to wound neovascularisation and
improved post-ischemic tissue survival, respectively8,11.

To date, there is limited information on the molecular mechan-
ism of HBOT action on patients with AVNFH. Key players in bone
turnover include specific cytokines osteoprotegerin (OPG), receptor
activator of NF-kB (RANK), and of its ligand (RANKL). Any disturb-
ance in the OPG/RANKL/RANK equilibrium will result in a shift to
either bone resorption or formation.

Previous studies have indicated interaction between inflamma-
tory factors and the OPG/RANK/RANKL homeostasis12,13. In particu-
lar, the interrelations of interleukin 6 (IL-6) and interleukin 1 beta
(IL-1b), RANKL, and tumor necrosis factor alfa (TNF-a), highlight
the interplay in bone resorption in the pathophysiology of
AVNFH13. The aim of our study is to investigate HBOT effect on
the ROS production in AVNFH patients and its alteration of inflam-
matory cytokines levels.

Material and methods

Patient selection

The study involved 23 male patients (Table 1) with unilateral fem-
oral head necrosis, including post-traumatic femoral head necrosis,
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post steroid therapy femoral head necrosis, femoral condyles
necrosis and other aseptic bone necrosis. Patients with others
underlying pathologies were excluded from this study. Informed
consent was obtained from all patients before the start of the
study. This study was approved by the Institutional Ethics
Committee of the University of Padova and was conducted in
accordance with the ethical standards of the Helsinki Declaration.
Every patient had a plain X-ray of the hip in two projections
(anterior and lateral) and then had magnetic resonance imaging
(MRI) to stage their pathology according to the Ficat classifica-
tion14 and previously published3,4. Ficat and Arlet proposed the
original classification of avascular necrosis in 1964 before the
advent of MRI; it is staged based on plain X-ray. Stage I is pre-
radiologic finding, presenting with pain only, and is the earliest
clinical manifestation of the syndrome. The crescent sign is a late
Ficat stage II finding, a linear subcortical lucency representing a
fracture line and impending femoral head collapse. Stages I–II
were described as early stages and Stages III and IV were classified
as late stages.

Working protocol

As previously described3,15, patients were exposed to 100%
inspired oxygen at 2.5 atmospheres absolute in a multiplace pres-
sure chamber for 90min using an overboard demand regulator
and oral-nasal mask. All patients received 30 treatments of HBOT
for 5 days a week for a period of 6weeks. After a 30-day break, a
second 30 HBOTs cycle was given (Figure 1).

Blood sample collection

Blood samples were drawn from the antecubital vein. A total of
5ml were collected in heparinized vacutainer tubes (Becton
Dickinson and Company, UK). Plasma was separated by centrifuge
at 1000 g for 10min at 4 �C. Blood samples were collected at spe-
cific points during patient treatment to analyse IL-1b, IL-6 and
TNF-a plasma levels as well as ROS generation as graphically
represented in Figure 1. Blood was collected prior to initiation
of HBOT (T0), after 15 sessions of HBOT (T1), after 30 sessions of
HBOT (T2), after the 30-day break between HBOT cycles (T3), and
after patient completion of HBOT (T4).

Quantification of plasma levels of inflammatory markers
IL-1b, IL-6 and TNF-a plasma levels were determined by ultrasensi-
tive ELISA immunoassays (R&D Systems, Minneapolis, MN, USA),
according to the manufacturer’s instructions. A nine well micro-
plate was pre-coated with monoclonal antigen specific antibodies
designed to target our inflammatory markers of interest (IL-1b, IL-
6 or TNF-a), three plates per antigen for a positive and negative
control standards to ensure there was no cross contamination.
Standards and samples (�200 mL) were pipetted into the wells and
the immobilized antibody bound any antigen of interest present.
Following the washing procedure, an enzyme-linked, antibody
specific, polyclonal antibody was added to the wells. After

subsequent washing, a substrate solution was added to the wells
and color developed in proportion to the amount of cytokine
bound at the initial step. The signal was then spectrophotometric-
ally measured at a wavelength of 450 nm. Plasma levels of inflam-
matory markers in pg/mL were then calculated according to
optical density of each well. This process was repeated for the
plasma isolated from each blood sample taken and aggregated for
each specific point of measure (T0, T1, T2, etc.) for comparison.

ROS detection

A X-band electron paramagnetic resonance (EPR) instrument (E-
scan-Bruker BioSpin, GmbH, MA) was used for determination of
ROS. The instrument is designed to function with very low concen-
trations of paramagnetic species in small (50 mL) samples. For each
recruited participant, the ROS production rate was determined by
means of a recently implemented EPR method16,17. Determination
involved analyse 50 mL plasma samples treated with a CMH (1-
hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) probe
solution (1:1), in order to transform ROS into more stable radical
species that are EPR detectable. 50 mL of the obtained solution
was then put in a glass EPR capillary tube (Noxygen Science
Transfer & Diagnostics, Germany) that was placed inside the cavity
of the E-scan spectrometer for data acquisition.

Acquisition parameters were inclusive of a microwave fre-
quency of 9.652GHz; modulation frequency of 86 kHz; modulation
amplitude of 2.28 G; sweep width of 60G, microwave power of
21.90mW, number of scans was 10; and receiver gain was equiva-
lent to 3.17�10. Sample temperature was first stabilized and then
kept at 37 �C by the temperature and gas controller Bio III unit,
interfaced to the spectrometer. Spectra were recorded and ana-
lysed using the Win EPR software (2.11 version) supplied by Bruker.
EPR measurements allowed us to obtain a relative quantitative
determination of ROS production rate in samples. All data were, in
turn, converted into absolute concentration (mmol�min�1) by
adopting CP� (3-Carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) sta-
ble radical as an external reference. This process was also repeated
for the plasma isolated from each blood sample taken and aggre-
gated for each specific point of measure (T0, T1, T2, etc.)
for comparison.

Statistical analysis

Data were analysed using repeated Shapiro-Wilk-s tests.
Experimental data were compared using ANOVA repeated meas-
ures with Tukey-s multiple comparison test to further check the
among-groups significance. Data are presented as means ± SD All
p values were two sided and a p value< .05 was considered statis-
tically significant.

Results

A significant reduction in TNF-a levels from T0
(111.87 ± 28.74 pg�mL�1) to T1 (90.32 ± 21.26 pg�mL�1; p< .01) was
observed (Figure 2(A)). Significant reductions were also seen
between T0 and T2 (88.25 ± 23.32 pg�mL�1; p< .001), T3
(85.77 ± 23.72 pg�mL�1; p< .01) and T4 (74.46 ± 11.81 pg�mL�1;
p< .001). Similarly, significant reductions in IL-6 levels were seen
between T0 (154.47±30.52pg�mL�1) and T1 (139.14±22.82pg�mL�1;
p< .0001), T2 (131.69 ± 21.44 pg�mL�1; p< .001), T3 (133.04 ± 22.50
pg�mL�1; p< .001), and T4 (133.38 ± 29.00 pg�mL�1; p< .001)
(Figure 2(B)). No significant change in IL-1b plasma levels were
seen in any subjects (Figure 2(C)). Of note, as previously described

Table 1. Demographic features and levels of
severity of disease of patients with ANFH.

Patients’ characteristics

Ficat stage

Subjects (n) Age (y) I II III

23 54.2 ± 10.1 1 7 15
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within the literature, calculated baseline plasma cytokine levels
indicate an elevated inflammatory state in patients with AVNFH
when compared to normal healthy individuals18,19.

ROS production increased from T0 (0.24 ± 0.03 mmol�min�1)
to T1 (0.29 ± 0.05mmol�min�1; p< .01) and T2 (0.35 ± 0.10mmol�

min�1; p< .01), however, this was followed by a gradual return
to baseline values (T3: 0.30 ± 0.05 mmol�min�1, and T4:
0.26 ± 0.07 mmol�min�1).

Discussion

In patients with AVNFH, reduced repair capacity and altered bone
remodeling play an important role in progression and severity of
the disease. Therefore, returning cytokines to homeostatic levels
may result in treatment by modulating the interaction of IL-1b,
IL-6 and/or TNF-a with OPG/RANK/RANKL.

Abu-Amer and colleagues described two isoforms of TNF-a
receptors. Type 1 (p55r) was found to promote osteoclastogene-
sis, while Type 2 (p75r) was found to suppress osteoclastogene-
sis20,21. We hypothesize that HBOT leads to reduced levels of
TNF-a decreasing binding of TNF-a to the p55r Type 1 receptor,
thus decreasing the activation of NF-kB13. Moreover, Kurokouchi
and colleagues found TNF-a to increase the expression of IL-6
genes22. As a result, lower levels of TNF-a resulting from HBOT
exposure could explain the reduction in IL-6 levels as shown in
Figure 2.

In vivo studies of IL-6 found that in transgenic mice with
overexpressed IL-6 there is greater bone turnover, reduced osteo-
blasts, and increased osteoclasts leading to osteopenia23.
Correspondingly, IL-6 deficient mice displayed reduced osteoclasts
and lower levels of bone erosion24. In the inflammatory process,
monocytes/macrophages produce IL-6, which can directly stimu-
late pre-osteoclast cells to differentiate and activate13. IL-6 also
stimulates stromal/osteoblastic cells to produce effectors, which
will then promote osteoclastic differentiation13.

IL-1b is one of the highly expressed and driving cytokines in
inflammation. Although belonging to a structurally different cyto-
kine class, IL-1b resembles many of the biological activity of TNF-a.
Increased IL-1b levels result in downstream activation of NF-kB
and c-jun N-terminal kinase which has an important role in multi-
nucleation and bone resorption20,25–28. Although IL-lb and TNF-a
have been reported to show identical effects on osteoblast-medi-
ated osteoclastic bone resorption they have contrasting effects
on bone formation through osteoblastic differentiation in
bone metabolism.

IL-1b enhances and TNF- a inhibits bone morphogenetic pro-
tein (BMP) -2 (osteogenin), or -4 (osteoinductive protein-l)
-induced alkaline phosphatase (marker of osteoblastic differenti-
ation) activity29. In the osteolytic process, TNF-a acts principally on
osteoclasts precursors while IL-1b increase bone resorption indir-
ectly through the production of RANKL whose plasma levels have
been reported to be unaffected by HBOT15,30. However, HBOT
does seem to induce upregulation of serum OPG production. This

HBOT 

T2 T3 T4 T0 T1  
15 HBOT sessions 15 HBOT sessions 30 days break 30 HBOT sessions 

5 x wk 5 x wk 5 x wk

Hyperbaric Chamber 

100% Oxygen at 2.4 Atm
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Figure 1. Experimental design of working protocol with timeline of blood samples collection.
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Figure 2. Effects of HBOT on plasma levels (pg�mL�1) of: (A) TNF-a, 9B) IL-6 and
9C) IL-1b in ANFH patients are shown. T0 before the beginning of the first HBOT
cycle of treatments (filled bars), T1: after 15 HBOT, T2: after 30 HBOT, T3: begin-
ning of the second HBOT cycle after a 30 days break, T4: end of the second
HBOT cycle (empty bars). Data are presented as mean± SD. Significance of differ-
ences: P< .05 (�), P< .01 (#), P< .001 (§), P< .0001 (¶).
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increase may reflect a compensatory response linked to the trend
of IL-1b concentration as OPG secretion is induced by IL-1b31.

HBOT enhances healing of necrotic wounds by stimulating
angiogenesis, fibroblast proliferation, osteoblast proliferation, and
collagen formation. These mechanisms are stimulated by modula-
tion of oxygen sensitive transcription factors as well as ROS-medi-
ated signaling pathways themselves8. ROS levels increased
between start of treatment (T0) and after 15 treatments of hyper-
baric oxygen (T1) due to the hyperoxia exposition32. Thereafter
this increase in ROS subsided after 30 treatments and was no lon-
ger witnessed in the later stages (T2, T3, T4). One possible explan-
ation is that the first HBOT cycle exerts a preconditioning activity
by upregulating the endogenous antioxidant and detoxification
capacity, enhancing cellular protection against the subsequent oxi-
dative stress damage5–7,20. These protective effects could be attrib-
uted to a more effective antioxidant production and activity,
which occur during HBOT treatments.

The current study has potential limitations. A larger sample
size, with a more homogenous clinical sample and additional pro
and anti-inflammatory markers would be helpful to confirm our
results. Moreover, information on transcription factors expression
and specific target genes involved in cellular response to such
treatments could help to better elucidate the detailed aspects of
the intricate and complex link between the inflammatory, oxida-
tive stress pathways and HBOT.

Finally, more clinical and basic researches are requested to bet-
ter understand HBOT’s molecular mechanisms of action to gain
evidences for this treatment to improve protocols and achieve
greater resolution for patients.

Conclusions

This study shows that HBOT results in an anti-inflammatory action
in patients with AVNFH. In AVNFH, HBOT results in a decreased
amount of circulating TNF-a and IL-6 (Figure 2). HBOT acting on
IL-1b, TNF-a, and IL-6, key bone-resorbing cytokines and their syn-
ergistic effects, could ultimately lead to beneficial resolution for
the patient. Moreover the decrease in inflammatory markers mir-
rored the reductions in visible edema upon radiographic imaging
and reductions in patient pain previously observed within the lit-
erature. The initial observed increase in ROS production enhances
healing of necrotic tissues inducing antioxidant production and
detoxification activity too (Figure 3).
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