44 research outputs found

    Unusual exanthema combined with cerebral vasculitis in pneumococcal meningitis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Bacterial meningitis is a complex, rapidly progressive disease in which neurological injury is caused in part by the causative organism and in part by the host's own inflammatory responses.</p> <p>Case presentation</p> <p>We present the case of a two-year-old Greek girl with pneumococcal meningitis and an atypical curvilinear-like skin eruption, chronologically associated with cerebral vasculitis. A diffusion-weighted MRI scan showed lesions with restricted diffusion, reflecting local areas of immunologically mediated necrotizing vasculitis.</p> <p>Conclusions</p> <p>Atypical presentations of bacterial meningitis may occur, and they can be accompanied by serious unexpected complications.</p

    Surveillance of Circulating Bordetella pertussis Strains in Europe during 1998 to 2015

    Get PDF
    One reason for increased pertussis incidence is the adaptation of Bordetella pertussis to vaccine-induced immunity by modulating its genomic structure. This study, EUpert IV, includes 265 isolates collected from nine European countries during 2012 to 2015 (n = 265) and compares the results to previous EUpert I to III studies (1998 to 2009). The analyses included genotyping, serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus variable-number tandem-repeat analysis (MLVA). Genotyping results showed only small variations among the common virulence genes of B. pertussis. The frequencies of serotypes Fim2 and Fim3 varied among the four collections. Genomic analyses showed that MLVA type 27 increased to 80% between the periods of 1998 to 2001 and 2012 to 2015. Two PFGE profiles, BpSR3 (29.4%) and BpSR10 (27.2%), constituted more than 50% of the circulating isolates in the present collection. Our study indicates that the European B. pertussis population is changing and became more homogenous after the introduction of acellular pertussis vaccines

    Simulated effect of pneumococcal vaccination in the Netherlands on existing rules constructed in a non-vaccinated cohort predicting sequelae after bacterial meningitis

    Get PDF
    BACKGROUND: Previously two prediction rules identifying children at risk of hearing loss and academic or behavioral limitations after bacterial meningitis were developed. Streptococcus pneumoniae as causative pathogen was an important risk factor in both. Since 2006 Dutch children receive seven-valent conjugate vaccination against S. pneumoniae. The presumed effect of vaccination was simulated by excluding all children infected by S. pneumoniae with the serotypes included in the vaccine, from both previous collected cohorts (between 1990-1995). METHODS: Children infected by one of the vaccine serotypes were excluded from both original cohorts (hearing loss: 70 of 628 children; academic or behavioral limitations: 26 of 182 children). All identified risk factors were included in multivariate logistic regression models. The discriminative ability of both new models was calculated. RESULTS: The same risk factors as in the original models were significant. The discriminative ability of the original hearing loss model was 0.84 and of the new model 0.87. In the academic or behavioral limitations model it was 0.83 and 0.84 respectively. CONCLUSION: It can be assumed that the prediction rules will also be applicable on a vaccinated population. However, vaccination does not provide 100% coverage and evidence is available that serotype replacement will occur. The impact of vaccination on serotype replacement needs to be investigated, and the prediction rules must be validated externally

    Dynamics of pneumococcal nasopharyngeal carriage in healthy children attending a day care center in northern Spain. influence of detection techniques on the results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumococcal nasopharyngeal carriage precedes invasive infection and is the source for dissemination of the disease. Differences in sampling methodology, isolation or identification techniques, as well as the period (pre -or post-vaccination) when the study was performed, can influence the reported rates of colonization and the distribution of serotypes carried.</p> <p>Objectives</p> <p>To evaluate the prevalence and dynamics of pneumococcal nasopharyngeal colonization in healthy children aged 6-34 months attending a day care center with a high level of hygiene and no overcrowding. The study was performed 3-4 years after the 7-valent pneumococcal vaccine was introduced, using multiple methodologies to detect and characterize the isolates.</p> <p>Methods</p> <p>Over 12 months, 25 children were sampled three times, 53 children twice and 27 children once. Three <it>Streptococcus pneumoniae </it>typing techniques were used: Quellung, Pneumotest-Latex-kit and multiplex-polymerase chain reaction (PCR). The similarity of isolates of the same serotype was established by pulsed field gel electrophoresis (PFGE) and occasionally the multilocus sequence type (ST) was also determined.</p> <p>Results</p> <p>Overall pneumococcal carriage and multiple colonization rates were 89.5% (94/105) and 39%, respectively. Among 218 pneumococci detected, 21 different serotypes and 13 non-typeable isolates were found. The most prevalent serotypes were 19A, 16F and 15B. Serotypes 15B, 19A and 21 were mainly found as single carriage; in contrast serotypes 6B, 11A and 20, as well as infrequent serotypes, were isolated mainly as part of multiple carriage. Most 19A isolates were ST193 but most serotypes showed high genetic heterogeneity. Changes in the pneumococci colonizing each child were frequent and the same serotype detected on two occasions frequently showed a different genotype. By multiplex-PCR, 100% of pneumococci could be detected and 94% could be serotyped versus 80.3% by the Quellung reaction and Pneumotest-Latex in combination (p < 0.001).</p> <p>Conclusions</p> <p>Rates of <it>S. pneumoniae </it>carriage and multiple colonization were very high. Prevalent serotypes differed from those found in similar studies in the pre-vaccination period. In the same child, clearance of a pneumococcal strain and acquisition of a new one was frequent in a short period of time. The most effective technique for detecting pneumococcal nasopharyngeal carriers was multiplex-PCR.</p

    Significant variation in transformation frequency in Streptococcus pneumoniae

    Get PDF
    The naturally transformable bacterium Streptococcus pneumoniae is able to take up extracellular DNA and incorporate it into its genome. Maintaining natural transformation within a species requires that the benefits of transformation outweigh its costs. Although much is known about the distribution of natural transformation among bacterial species, little is known about the degree to which transformation frequencies vary within species. Here we find that there is significant variation in transformation frequency between strains of Streptococcus pneumoniae isolated from asymptomatic carriage, and that this variation is not concordant with isolate genetic relatedness. Polymorphism in the signalling system regulating competence is also not causally related to differences in transformation frequency, although this polymorphism does influence the degree of genetic admixture experienced by bacterial strains. These data suggest that bacteria can evolve new transformation frequencies over short evolutionary timescales. This facility may permit cells to balance the potential costs and benefits of transformation by regulating transformation frequency in response to environmental conditions

    Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine.

    Get PDF
    BACKGROUND: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10. METHODS AND FINDINGS: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤ 2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates. CONCLUSIONS: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation

    Non-capsulated and capsulated Haemophilus influenzae in children with acute otitis media in Venezuela: a prospective epidemiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-typeable <it>Haemophilus influenzae </it>(NTHi) and <it>Streptococcus pneumoniae </it>are major causes of bacterial acute otitis media (AOM). Data regarding AOM are limited in Latin America. This is the first active surveillance in a private setting in Venezuela to characterize the bacterial etiology of AOM in children < 5 years of age.</p> <p>Methods</p> <p>Between December 2008 and December 2009, 91 AOM episodes (including sporadic, recurrent and treatment failures) were studied in 87 children enrolled into a medical center in Caracas, Venezuela. Middle ear fluid samples were collected either by tympanocentesis or spontaneous otorrhea swab sampling method. Standard laboratory and microbiological techniques were used to identify bacteria and test for antimicrobial resistance. The results were interpreted according to Clinical Laboratory Standards Institute (CLSI) 2009 for non-meningitis isolates. All statistical analyses were performed using SAS 9.1 and Microsoft Excel (for graphical purposes).</p> <p>Results</p> <p>Overall, bacteria were cultured from 69.2% (63 of the 91 episodes); at least one pathogen (<it>S. pneumoniae, H. influenzae, S. pyogenes </it>or <it>M. catarrhalis</it>) was cultured from 65.9% (60/91) of episodes. <it>H. influenzae </it>(55.5%; 35/63 episodes) and <it>S. pneumoniae </it>(34.9%; 22/63 episodes) were the most frequently reported bacteria. Among <it>H. influenzae </it>isolates, 62.9% (22/35 episodes) were non-capsulated (NTHi) and 31.4% (11/35 episodes) were capsulated including types d, a, c and f, across all age groups. Low antibiotic resistance for <it>H. influenzae </it>was observed to amoxicillin/ampicillin (5.7%; 2/35 samples). NTHi was isolated in four of the six <it>H. influenzae </it>positive samples (66.7%) from recurrent episodes.</p> <p>Conclusions</p> <p>We found <it>H. influenzae </it>and <it>S. pneumoniae </it>to be the main pathogens causing AOM in Venezuela. Pneumococcal conjugate vaccines with efficacy against these bacterial pathogens may have the potential to maximize protection against AOM.</p

    Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE Project

    Get PDF
    Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among ≥5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% ≥5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in ≥5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≤26% across all ages) than pre-PCV (≥70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed

    Global landscape review of serotype-specific invasive pneumococcal disease surveillance among countries using PCV10/13: The pneumococcal serotype replacement and distribution estimation (PSERENADE) project

    Get PDF
    Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon
    corecore