1,537 research outputs found

    A High Flux Source of Cold Rubidium

    Full text link
    We report the production of a continuous, slow, and cold beam of 87-Rb atoms with an unprecedented flux of 3.2 x 10^12 atoms/s and a temperature of a few milliKelvin. Hot atoms are emitted from a Rb candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, augmenting overall beam flux by a factor of 50. The atomic beam is then decelerated and longitudinally cooled by Zeeman slowing

    The Size of the Narrow-Line Emitting Region in the Seyfert 1 Galaxy NGC 5548 from Emission-Line Variability

    Full text link
    The narrow [O III] 4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow line-emitting region has a radius of only 1-3 pc and is denser (n ~ 10^5 cm^{-3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass.Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hbeta emission-line light curves for the period 1988 to 2008.Comment: 11 pages, 5 figures, 6 tables. Accepted for publication in Ap

    [OII] Emission, Eigenvector 1 and Orientation in Radio-quiet Quasars

    Get PDF
    We present supportive evidence that the Boroson and Green eigenvector 1 is not driven by source orientation. Until recently it was generally accepted that eigenvector 1 does not depend on orientation as it strongly correlates with [OIII]5007 emission, thought to be an isotropic property. However, recent studies of radio-loud AGN have questioned the isotropy of [OIII] emission and concluded that [OII]3727 emission is isotropic. In this paper we investigate the relation between eigenvector 1 and [OII] emission in radio-quiet BQS (Bright Quasar Survey) quasars, and readdress the issue of orientation as the driver of eigenvector 1. We find significant correlations between eigenvector 1 and orientation independent [OII] emission, which implies that orientation does not drive eigenvector 1. The luminosities and equivalent widths of [OIII] and [OII] correlate with one another, and the range in luminosities and equivalent widths is similar. This suggests that the radio-quiet BQS quasars are largely free of orientation dependent dust effects and ionization dependent effects in the narrow-line region. We also conclude that neither the [OIII] emission nor the [OII]/[OIII] ratio are dependent on orientation in our radio-quiet BQS quasar sample, contrary to recent results found for radio-loud quasars.Comment: 24 pages, 12 figures, accepted for publication in Ap

    Selection Bias in Observing the Cosmological Evolution of the Mbh-sigma and Mbh-L Relationships

    Full text link
    Programs to observe evolution in the Mbh-sigma or Mbh-L relations typically compare black-hole masses, Mbh, in high-redshift galaxies selected by nuclear activity to Mbh in local galaxies selected by luminosity L, or stellar velocity dispersion sigma. Because AGN luminosity is likely to depend on Mbh, selection effects are different for high-redshift and local samples, potentially producing a false signal of evolution. This bias arises because cosmic scatter in the Mbh-sigma and Mbh-L relations means that the mean log(L) or log(sigma) among galaxies that host a black hole of given Mbh, may be substantially different than the log(L) or log(sigma) obtained from inverting the Mbh-L or Mbh-sigma relations for the same nominal Mbh. The bias is particularly strong at high Mbh, where the luminosity and dispersion functions of galaxies are falling rapidly. The most massive black holes occur more often as rare outliers in galaxies of modest mass than in the even rarer high-mass galaxies, which would otherwise be the sole location of such black holes in the absence of cosmic scatter. Because of this bias, Mbh will typically appear to be too large in the distant sample for a given L or sigma. For the largest black holes and the largest plausible cosmic scatter, the bias can reach a factor of 3 in Mbh for the Mbh-sigma relation and a factor of 9 for the Mbh-L relation. Unfortunately, the actual cosmic scatter is not known well enough to correct for the bias. Measuring evolution of the Mbh and galaxy property relations requires object selection to be precisely defined and exactly the same at all redshifts.Comment: 28 pages, 6 figures, submitted to the Astrophysical Journa

    VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    Get PDF
    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent precursor signal 62 s prior to trigger. The afterglow was detected in ESO VLT, NTT, and DK1.54m follow-up observations. Broad-band and spectroscopic observations of the spectral energy distribution reveals a sharp break at optical wavelengths which is interpreted as a Ly-alpha absorption edge at 6700 A. This places GRB 000131 at a redshift of 4.500 +/- 0.015. The inferred isotropic energy release in gamma rays alone was approximately 10^54 erg (depending on the assumed cosmology). The rapid power-law decay of the afterglow (index alpha=2.25, similar to bursts with a prior break in the lightcurve), however, indicates collimated outflow, which relaxes the energy requirements by a factor of < 200. The afterglow of GRB 000131 is the first to be identified with an 8-m class telescope.Comment: 8 pages, 7 figures, accepted to A&A Letter

    A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051

    Get PDF
    We present the first results from a high sampling rate, multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs. We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity - the R_BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hbeta emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR = 1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52) x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L relationship, based on the present luminosity of NGC 4051 and the most current calibration of the relation by Bentz et al. (2009a). We also present a preliminary look at velocity-resolved Hbeta light curves and time delay measurements, although we are unable to reconstruct an unambiguous velocity-resolved reverberation signal.Comment: 38 pages, 7 figures, accepted for publication in ApJ, changes from v1 reflect suggestions from anonymous refere

    The quasar M_bh - M_host relation through Cosmic Time II - Evidence for evolution from z=3 to the present age

    Full text link
    We study the dependence of the M_bh - M_host relation on the redshift up to z=3 for a sample of 96 quasars the host galaxy luminosities of which are known. Black hole masses were estimated assuming virial equilibrium in the broad line regions (Paper I), while the host galaxy masses were inferred from their luminosities. With this data we are able to pin down the redshift dependence of the M_bh - M_host relation along 85 per cent of the Universe age. We show that, in the sampled redshift range, the M_bh - L_host relation remains nearly unchanged. Once we take into account the aging of the stellar population, we find that the M_bh / M_host ratio (Gamma) increases by a factor ~7 from z=0 to z=3. We show that Gamma evolves with z regardless of the radio loudness and of the quasar luminosity. We propose that most massive black holes, living their quasar phase at high-redshift, become extremely rare objects in host galaxies of similar mass in the Local Universe.Comment: 10 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database

    Get PDF
    We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product is obtained by using the cross-correlation function centroid (as opposed to the cross-correlation function peak) for the time delay and the line dispersion (as opposed to full width half maximum) for the line width and by measuring the line width in the variable part of the spectrum. Accurate line-width measurement depends critically on avoiding contaminating features, in particular the narrow components of the emission lines. We find that the precision (or random component of the error) of reverberation-based black hole mass measurements is typically around 30%, comparable to the precision attained in measurement of black hole masses in quiescent galaxies by gas or stellar dynamical methods. Based on results presented in a companion paper by Onken et al., we provide a zero-point calibration for the reverberation-based black hole mass scale by using the relationship between black hole mass and host-galaxy bulge velocity dispersion. The scatter around this relationship implies that the typical systematic uncertainties in reverberation-based black hole masses are smaller than a factor of three. We present a preliminary version of a mass-luminosity relationship that is much better defined than any previous attempt. Scatter about the mass-luminosity relationship for these AGNs appears to be real and could be correlated with either Eddington ratio or object inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication in The Astrophysical Journa

    Black Hole Mass Estimates Based on CIV are Consistent with Those Based on the Balmer Lines

    Full text link
    Using a sample of high-redshift lensed quasars from the CASTLES project with observed-frame ultraviolet or optical and near-infrared spectra, we have searched for possible biases between supermassive black hole (BH) mass estimates based on the CIV, Halpha and Hbeta broad emission lines. Our sample is based upon that of Greene, Peng & Ludwig, expanded with new near-IR spectroscopic observations, consistently analyzed high S/N optical spectra, and consistent continuum luminosity estimates at 5100A. We find that BH mass estimates based on the FWHM of CIV show a systematic offset with respect to those obtained from the line dispersion, sigma_l, of the same emission line, but not with those obtained from the FWHM of Halpha and Hbeta. The magnitude of the offset depends on the treatment of the HeII and FeII emission blended with CIV, but there is little scatter for any fixed measurement prescription. While we otherwise find no systematic offsets between CIV and Balmer line mass estimates, we do find that the residuals between them are strongly correlated with the ratio of the UV and optical continuum luminosities. Removing this dependency reduces the scatter between the UV- and optical-based BH mass estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The dispersion is smallest when comparing the CIV sigma_l mass estimate, after removing the offset from the FWHM estimates, and either Balmer line mass estimate. The correlation with the continuum slope is likely due to a combination of reddening, host contamination and object-dependent SED shapes. When we add additional heterogeneous measurements from the literature, the results are unchanged.Comment: Accepted for publication in The Astrophysical Journal. 37 text pages + 8 tables + 23 figures. Updated with comments by the referee and with a expanded discussion on literature data including new observation
    • 

    corecore