141 research outputs found

    Information driven evaluation of data hiding algorithms

    Get PDF
    Abstract. Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. Due to the large amount of possible techniques that can be used to achieve this goal, it is necessary to provide some standard evaluation metrics to determine the best algorithms for a specific application or context. Currently, however, there is no common set of parameters that can be used for this purpose. This paper explores the problem of PPDM algorithm evaluation, starting from the key goal of preserving of data quality. To achieve such goal, we propose a formal definition of data quality specifically tailored for use in the context of PPDM algorithms, a set of evaluation parameters and an evaluation algorithm. The resulting evaluation core process is then presented as a part of a more general three step evaluation framework, taking also into account other aspects of the algorithm evaluation such as efficiency, scalability and level of privacy.

    Robot companions for citizens

    Get PDF
    This paper describes the scientific vision and objectives of the FET Flagship candidate initiative Robot Companions for Citizens. Robot Companions will be a new generation of machines that will primarily help and assist elderly people in activities of daily living in their workplace, home and in society. They will be the ICT solution for a new sustainable welfare

    Core-shell carbon-polymer quantum dot passivation for near infrared perovskite light emitting diodes

    Get PDF
    High-performance perovskite light-emitting diodes (PeLEDs) require a high quality perovskite emitter and appropriate charge transport layers to facilitate charge injection and transport within the device. Solution-processed n-type metal oxides represent a judicious choice for the electron transport layer (ETL); however, they don't always present suitable surface properties and energetics in order to be compatible with the perovskite emitter. Moreover, the emitter itself exhibits poor nanomorphology and defect traps that compromise the device performance. Here we modulate the surface properties and interface energetics of the tin oxide (SnO2) ETL with the perovskite emitter by using an amino functionalized difluoro{2-[1-(3,5-dimethyl-2H-pyrrol-2-ylidene-N)ethyl]-3,5-dimethyl-1H-pyrrolato-N}boron (BDP) compound and passivate the defects present in the perovskite with carbon-polymer core-shell quantum dots (PCDs) inserted into the perovskite precursor. Both these approaches synergistically improve the perovskite layer nanomorphology and enhance the radiative recombination. These properties resulted in the fabrication of near infrared (NIR) PeLEDs based on formamidinium lead iodide (FAPbI3) with a high radiance of 92 W sr-1 m-2, an external quantum efficiency (EQE) of 14% and reduced efficiency roll-off

    Strain relaxation and multidentate anchoring in n-type perovskite transistors and logic circuits

    Get PDF
    This is the author accepted manuscriptData availability: Source data are provided with this paper. Additional data related to this work are available from the corresponding authors upon request.Code availability statement: All codes (software) used in the calculation and visualization are publicly available and the condition of their usage in the publication is an appropriate citation.The engineering of tin halide perovskites has led to the development of p-type transistors with field-effect mobilities of over 70 cm2 V-1 s-1 . However, due to their background hole doping, these perovskites are not suitable for n-type transistors. Ambipolar lead halide perovskites are potential candidates, but their defective nature limits electron mobilities to around 3-4 cm2 V-1 s-1, which makes the development all-perovskite logical circuits challenging. Here, we report formamidinium lead iodide perovskite n-type transistors with field-effect mobilities of up to 33 cm2 V-1s-1 measured in continuous bias mode. This is achieved through strain relaxation of the perovskite lattice using a methyl ammonium chloride additive, followed by suppression of undercoordinated lead through tetramethyl ammonium fluoride multidentate anchoring. Our approach stabilizes the alpha phase, balances strain, and improves surface morphology, crystallinity, and orientation. It also enables low-defect perovskite–dielectric interfaces. We use 46 the transistors to fabricate unipolar inverters and eleven-stage ring oscillator

    A Silanol-Functionalized Polyoxometalate with Excellent Electron Transfer Mediating Behavior to ZnO and TiO 2 Cathode Interlayers for Highly Efficient and Extremely Stable Polymer Solar Cells

    Get PDF
    Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic–inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours
    • …
    corecore