1,657 research outputs found
General Monogamy Inequality for Bipartite Qubit Entanglement
We consider multipartite states of qubits and prove that their bipartite
quantum entanglement, as quantified by the concurrence, satisfies a monogamy
inequality conjectured by Coffman, Kundu, and Wootters. We relate this monogamy
inequality to the concept of frustration of correlations in quantum spin
systems.Comment: Fixed spelling mistake. Added references. Fixed error in
transformation law. Shorter and more explicit proof of capacity formula.
Reference added. Rewritten introduction and conclusion
Superpressure balloon flights from Christchurch, New Zealand, July 1968 - December 1969
Strain gages on superpressure balloon flights from Christchurch, New Zealand - Jul. 1968 to Dec. 196
Local permutations of products of Bell states and entanglement distillation
We present new algorithms for mixed-state multi-copy entanglement
distillation for pairs of qubits. Our algorithms perform significantly better
than the best known algorithms. Better algorithms can be derived that are tuned
for specific initial states. The new algorithms are based on a characterization
of the group of all locally realizable permutations of the 4^n possible tensor
products of n Bell states.Comment: 6 pages, 1 figur
Valence Bond Solids for Quantum Computation
Cluster states are entangled multipartite states which enable to do universal
quantum computation with local measurements only. We show that these states
have a very simple interpretation in terms of valence bond solids, which allows
to understand their entanglement properties in a transparent way. This allows
to bridge the gap between the differences of the measurement-based proposals
for quantum computing, and we will discuss several features and possible
extensions
Minimally Entangled Typical Thermal State Algorithms
We discuss a method based on sampling minimally entangled typical thermal
states (METTS) that can simulate finite temperature quantum systems with a
computational cost comparable to ground state DMRG. Detailed implementations of
each step of the method are presented, along with efficient algorithms for
working with matrix product states and matrix product operators. We furthermore
explore how properties of METTS can reveal characteristic order and excitations
of systems and discuss why METTS form an efficient basis for sampling. Finally,
we explore the extent to which the average entanglement of a METTS ensemble is
minimal.Comment: 18 pages, 14 figure
Multipartite entanglement in 2 x 2 x n quantum systems
We classify multipartite entangled states in the 2 x 2 x n (n >= 4) quantum
system, for example the 4-qubit system distributed over 3 parties, under local
filtering operations. We show that there exist nine essentially different
classes of states, and they give rise to a five-graded partially ordered
structure, including the celebrated Greenberger-Horne-Zeilinger (GHZ) and W
classes of 3 qubits. In particular, all 2 x 2 x n-states can be
deterministically prepared from one maximally entangled state, and some
applications like entanglement swapping are discussed.Comment: 9 pages, 3 eps figure
A new family of matrix product states with Dzyaloshinski-Moriya interactions
We define a new family of matrix product states which are exact ground states
of spin 1/2 Hamiltonians on one dimensional lattices. This class of
Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but
at specified and not arbitrary couplings. We also compute in closed forms the
one and two-point functions and the explicit form of the ground state. The
degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
First-principles calculations in crystalline structures are often performed
with a planewave basis set. To make the number of basis functions tractable two
approximations are usually introduced: core electrons are frozen and the
diverging Coulomb potential near the nucleus is replaced by a smoother
expression. The norm-conserving pseudopotential was the first successful method
to apply these approximations in a fully ab initio way. Later on, more
efficient and more exact approaches were developed based on the ultrasoft and
the projector augmented wave formalisms. These formalisms are however more
complex and developing new features in these frameworks is usually more
difficult than in the norm-conserving framework. Most of the existing tables of
norm- conserving pseudopotentials, generated long ago, do not include the
latest developments, are not systematically tested or are not designed
primarily for high accuracy. In this paper, we present our PseudoDojo framework
for developing and testing full tables of pseudopotentials, and demonstrate it
with a new table generated with the ONCVPSP approach. The PseudoDojo is an open
source project, building on the AbiPy package, for developing and
systematically testing pseudopotentials. At present it contains 7 different
batteries of tests executed with ABINIT, which are performed as a function of
the energy cutoff. The results of these tests are then used to provide hints
for the energy cutoff for actual production calculations. Our final set
contains 141 pseudopotentials split into a standard and a stringent accuracy
table. In total around 70.000 calculations were performed to test the
pseudopotentials. The process of developing the final table led to new insights
into the effects of both the core-valence partitioning and the non-linear core
corrections on the stability, convergence, and transferability of
norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table
Aromatic emission from the ionised mane of the Horsehead nebula
We study the evolution of the Aromatic Infrared Bands (AIBs) emitters across
the illuminated edge of the Horsehead nebula and especially their survival and
properties in the HII region. We present spectral mapping observations taken
with the Infrared Spectrograph (IRS) at wavelengths 5.2-38 microns. A strong
AIB at 11.3 microns is detected in the HII region, relative to the other AIBs
at 6.2, 7.7 and 8.6 microns. The intensity of this band appears to be
correlated with the intensity of the [NeII] at 12.8 microns and of Halpha,
which shows that the emitters of the 11.3 microns band are located in the
ionised gas. The survival of PAHs in the HII region could be due to the
moderate intensity of the radiation field (G0 about 100) and the lack of
photons with energy above about 25eV. The enhancement of the intensity of the
11.3 microns band in the HII region, relative to the other AIBs can be
explained by the presence of neutral PAHs. Our observations highlight a
transition region between ionised and neutral PAHs observed with ideal
conditions in our Galaxy. A scenario where PAHs can survive in HII regions and
be significantly neutral could explain the detection of a prominent 11.3
microns band in other Spitzer observations.Comment: 9 pages, 9 figures, accepted for publication in A&
- …
