1,657 research outputs found

    General Monogamy Inequality for Bipartite Qubit Entanglement

    Get PDF
    We consider multipartite states of qubits and prove that their bipartite quantum entanglement, as quantified by the concurrence, satisfies a monogamy inequality conjectured by Coffman, Kundu, and Wootters. We relate this monogamy inequality to the concept of frustration of correlations in quantum spin systems.Comment: Fixed spelling mistake. Added references. Fixed error in transformation law. Shorter and more explicit proof of capacity formula. Reference added. Rewritten introduction and conclusion

    Superpressure balloon flights from Christchurch, New Zealand, July 1968 - December 1969

    Get PDF
    Strain gages on superpressure balloon flights from Christchurch, New Zealand - Jul. 1968 to Dec. 196

    Local permutations of products of Bell states and entanglement distillation

    Get PDF
    We present new algorithms for mixed-state multi-copy entanglement distillation for pairs of qubits. Our algorithms perform significantly better than the best known algorithms. Better algorithms can be derived that are tuned for specific initial states. The new algorithms are based on a characterization of the group of all locally realizable permutations of the 4^n possible tensor products of n Bell states.Comment: 6 pages, 1 figur

    Valence Bond Solids for Quantum Computation

    Get PDF
    Cluster states are entangled multipartite states which enable to do universal quantum computation with local measurements only. We show that these states have a very simple interpretation in terms of valence bond solids, which allows to understand their entanglement properties in a transparent way. This allows to bridge the gap between the differences of the measurement-based proposals for quantum computing, and we will discuss several features and possible extensions

    Minimally Entangled Typical Thermal State Algorithms

    Full text link
    We discuss a method based on sampling minimally entangled typical thermal states (METTS) that can simulate finite temperature quantum systems with a computational cost comparable to ground state DMRG. Detailed implementations of each step of the method are presented, along with efficient algorithms for working with matrix product states and matrix product operators. We furthermore explore how properties of METTS can reveal characteristic order and excitations of systems and discuss why METTS form an efficient basis for sampling. Finally, we explore the extent to which the average entanglement of a METTS ensemble is minimal.Comment: 18 pages, 14 figure

    Multipartite entanglement in 2 x 2 x n quantum systems

    Get PDF
    We classify multipartite entangled states in the 2 x 2 x n (n >= 4) quantum system, for example the 4-qubit system distributed over 3 parties, under local filtering operations. We show that there exist nine essentially different classes of states, and they give rise to a five-graded partially ordered structure, including the celebrated Greenberger-Horne-Zeilinger (GHZ) and W classes of 3 qubits. In particular, all 2 x 2 x n-states can be deterministically prepared from one maximally entangled state, and some applications like entanglement swapping are discussed.Comment: 9 pages, 3 eps figure

    A new family of matrix product states with Dzyaloshinski-Moriya interactions

    Full text link
    We define a new family of matrix product states which are exact ground states of spin 1/2 Hamiltonians on one dimensional lattices. This class of Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but at specified and not arbitrary couplings. We also compute in closed forms the one and two-point functions and the explicit form of the ground state. The degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur

    The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table

    Full text link
    First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm- conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high accuracy. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70.000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table

    Aromatic emission from the ionised mane of the Horsehead nebula

    Get PDF
    We study the evolution of the Aromatic Infrared Bands (AIBs) emitters across the illuminated edge of the Horsehead nebula and especially their survival and properties in the HII region. We present spectral mapping observations taken with the Infrared Spectrograph (IRS) at wavelengths 5.2-38 microns. A strong AIB at 11.3 microns is detected in the HII region, relative to the other AIBs at 6.2, 7.7 and 8.6 microns. The intensity of this band appears to be correlated with the intensity of the [NeII] at 12.8 microns and of Halpha, which shows that the emitters of the 11.3 microns band are located in the ionised gas. The survival of PAHs in the HII region could be due to the moderate intensity of the radiation field (G0 about 100) and the lack of photons with energy above about 25eV. The enhancement of the intensity of the 11.3 microns band in the HII region, relative to the other AIBs can be explained by the presence of neutral PAHs. Our observations highlight a transition region between ionised and neutral PAHs observed with ideal conditions in our Galaxy. A scenario where PAHs can survive in HII regions and be significantly neutral could explain the detection of a prominent 11.3 microns band in other Spitzer observations.Comment: 9 pages, 9 figures, accepted for publication in A&
    corecore