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Valence Bond Solids for Quantum Computation
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Cluster states are entangled multipartite states which enable to do universal quantum computation
with local measurements only. We show that these states have a very simple interpretation in terms
of valence bond solids, which allows to understand their entanglement properties in a transparent
way. This allows to bridge the gap between the differences of the measurement-based proposals for
quantum computing, and we will discuss several features and possible extensions.

PACS numbers: 75.10.Pq, 03.67.Mn, 03.65.Ud, 03.67.-a

The concept of teleportation [1] plays a crucial role
in the understanding of entangled quantum systems. It
does not only allow us to use entangled states as perfect
quantum channels, but also to implement non-local uni-
tary operations [2]. Based on this idea it was shown that
universal quantum computation can be achieved if one
can prepare a separable initial state and implement joint
two-qubit measurements [3, 4, 5, 6]. In the same spirit,
but somehow orthogonal to these schemes, Raussendorf
and Briegel [7] showed that universal quantum computa-
tion is possible by doing local measurements on the qubits
in a highly entangled so–called cluster state [8]. These
studies highlighted the central role of entanglement for
quantum computation [9, 10]. However, the structure
of general multiparticle entanglement is, for the moment
being, still very poorly understood, and it is somehow
mysterious that the cluster states enable for universal
quantum computation. In this note, we show that the
structure of entanglement in cluster states is particularly
simple and can be well understood by looking at it as a
so–called valence bond solid with only nearest-neighbor
bonds. This enables us to show that the one-way com-
puter [7] essentially works in an equivalent way as the
other measurement-based proposals for quantum compu-
tation.
Let us start by recalling how universal quantum com-

putation can be performed using measurements only on
a collection of maximally entangled states of 2 qubits.
Schematically, we will present the logical qubits as the
leftmost particles. Logical gates can be implemented by
introducing extra pairs of maximally entangled states
|H〉 = |00〉 + |01〉 + |10〉 − |11〉 of two qubits (every
other maximally entangled would also be good), and do-
ing Bell measurements on halves of these |H〉 and the
logical qubits. The new logical qubits are now in the
other parts of the maximally entangled state. It is well
known that a universal set of gates [26] is given by ar-
bitrary local unitary transformations and the phase gate
Uph = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|. A local
unitary transformation U on qubit i can be implemented
by doing a Bell measurement in the basis

|α〉 = (U †σα ⊗ 11)|H〉, α = 0, 1, 2, 3 (1)

where σα denote the Pauli matrices (including σ0 = 11);
see Figure 1A. This implements the unitary gate σαU
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FIG. 1: (A) Implementation of a 1-qubit gate by measuring
in the 2-qubit basis |α〉 (1). The edges connected by the line
denote the maximally entangled state |H〉. (B) Implementa-
tion of a 2-qubit gate by 3-qubit measurements in the basis
|α〉 and |β〉 (2).

which is U up to an extra multiplication with a Pauli
operator (α is conditioned by the measurement outcome);
this extra Pauli operator however does not harm [27].
Similarly, the phase gate Uph can be implemented by
adding three extra pairs of maximally entangled states
|H〉 as depicted in Figure 1B. Suppose two three-qubit
measurements are done (see Fig. 1B) in the complete
bases

{|α〉} = {|β〉} = (σx)
i ⊗ (σx)

j ⊗ 11(|0〉|0〉|0〉 ± |1〉|1〉|1〉)
(2)

with i, j ∈ {0, 1} and |±〉 = (|0〉± |1〉)/
√
2. It can readily

be checked that this implements the gate (H ⊗ H)Uph

with H the Hadamard gate H = |+〉〈0| + |−〉〈1|, up
to a harmless extra multiplication with Pauli operators.
Together with the possibility of implementing local uni-
taries, this proves that universal quantum computation
can be done by doing only Bell measurements on two or
three qubits.
Let us summarize the three ingredients needed for be-

ing able to implement quantum computing along the lines
sketched: 1/ it must be possible to create ancillary sin-
glets; 2/ two- and three-qubit measurements of the form
(1,2) can be implemented between halves of these extra
singlets and the logical qubits.
Inspired by the AKLT-valence bond solids (VBS)

[11, 12, 13], playing a central role in condensed mat-
ter physics, it is now interesting to investigate whether
it is possible to interpret the two (or three) qubits on
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FIG. 2: Representation of a Valence Bond Solid. The edges
connected with a dotted line denote a singlet, while the circles
denote a projection P of all qubits inside it with Hilbert space
H⊗n

2
to a single qubit H̃2. In the present paper, P is always

of the form P = |0̃〉〈00 . . . 0|+ |1̃〉〈11 . . . 1|.

which the measurements have to be implemented as vir-
tual qubits representing one physical qubit. As will
become clear, this will exactly lead to the concept of
the one-way computer [7]. As depicted in Figure 2,
VBS are constructed by distributing singlets |H〉 made
from virtual qubits between different sites, followed by
a local projection of the virtual qubits on a smaller
dimensional subspace H̃ encoding the physical qubit.
In the case of the 2-D lattice in Figure 2 e.g., the 4
qubits can be projected on a one qubit subspace by
the operator P4 = |0̃〉〈0000| + |1̃〉〈1111| (here 4 spec-
ifies that there are 4 virtual qubits; Pn is defined as
Pn = |0̃〉〈00 . . . 0| + |1̃〉〈11 . . . 1| with n virtual qubits).
The idea is thus to interpret one of the virtual qubits as
the logical one, and the other virtual ones as the ones
enabling teleportation.
Let us see whether the two listed requirements for mea-

surement based quantum computation can be fulfilled.
1/ Consider the VBS of Figure 2. To implement a

virtual 2-qubit (3-qubit) measurement, we want that the
physical qubit is only made up of 2 (3) virtual qubits
(on which we want to implement a Bell measurement),
and hence that 2 (1) virtual qubit(s) effectively disap-

pear. Suppose the physical qubit (Hilbert space H̃) is
obtained by projecting the virtual ones by the projec-
tor P4 = |0̃〉〈0000| + |1̃〉〈1111|. Measuring 2 (1) neigh-
boring physical qubit(s) in the |0̃〉, |1̃〉-basis effectively
replaces 2 (1) virtual qubit(s) with |+〉 or |−〉 depend-
ing on the measurement outcome. But it holds that
P4|+〉 = P3 ≡ |0̃〉〈000| + |1̃〉〈111| and P3|−〉 = σ̃zP3,
and similarly P3|+〉 = P2. Therefore the bonds in a VBS
can be broken at will by measuring neighboring physical
qubits, the virtual qubits effectively disappear and the
projector Pn changes into Pn−1.
2/ Let us now investigate whether virtual measure-

ments such as (1,meas2) can be implemented by local
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FIG. 3: Implementing a global unitary transformation on
qubits 1 and 2 by doing local projections P1 and P2 on them
and a maximally entangled state |H〉.

measurements on physical qubits. This will be possible if
the projector Pn has full support on a subset of rays cor-
responding to these multiqubit measurements. Clearly,
this is the case for the phase gate if the projector is P3, as
a measurement in the physical basis |0̃〉 ± |1̃〉 effectively
corresponds to the measurement of the virtual qubits in
the basis |000〉±|111〉 which belongs to the optimal basis
(2). In the case of the single qubit gates, things are a
bit more subtle. Suppose the projector is P2. Only mea-
surements in bases of the form |0̃〉±exp(iξ)|1̃〉 correspond
to Bell measurements, and its effect is to implement the
unitary

U = (σx)
k 1√

2

(

1 exp(−iξ)
1 − exp(−iξ)

)

on the (virtual) logical qubit (k = 0, 1 depending on the
measurement outcome). It can however easily be checked
that a sequence of 4 such unitaries can generate every
specified unitary ∈ SU(2) [28] (this again holds up to
left multiplication with Pauli matrices). Therefore the
second requirement is also fulfilled.
By measuring the qubits from left to right on a lat-

tice, the (virtual) logical qubits travel from left to right,
yielding quantum computation using single-qubit mea-
surements only. This shows that 2-D valence bond solids
can be used to do a quantum computation. This model
of computation exactly coincides with the one-way com-
puter of Rausendorf and Briegel; indeed, we will next
show that the cluster state is exactly the VBS used in
the above construction.
The cluster states are a subset of the so–called stabi-

lizer states [14], which are defined by specifying a com-
plete set of commuting observables Oi, where each Oi is a
tensor product of the Pauli matrices σ0 = 112, σ

x, σy, σz .
The stabilizer states are the common eigenstates of these
operators. Let us show that any stabilizer state can be
interpreted as a valence bond state. Stabilizer states can
efficiently be prepared from a completely separable state
by applying appropriate 2-qubit unitary operations to
it (see e.g. [15]). The reason that stabilizer states are
very simple and manageable to work with is due to the
fact all these 2-qubit unitary operations can be chosen
to commute with each other. This can readily be seen
by looking at the normal form for stabilizer states [16],
and then making use of properties of Pauli operators such
as U(σx ⊗ σz)U † = σx ⊗ I with U = diag[1, 1, 1,−1] to
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diagonalize all operators Oi. The trick is now to imple-
ment these commuting 2-qubit unitary transformations
by a teleportation-like principle that consists of adding
virtual singlets, and then doing appropriate projections
[2, 17]. More specifically, consider the two qubits 1 and
2 in Figure 3; an extra singlet |H〉1̄2̄ is added, and then
any unitary transformation between 1 and 2 can be sim-
ulated by projecting the two-qubit spaces labelled by 1, 1̄
(2, 2̄) onto the qubits 1 (2 with appropriate projectors P1

(P2 (P1, P2 are 2 × 4 matrices). Iterating this scheme,
one readily sees that every stabilizer state can be inter-
preted as a VBS, possibly with bonds extending over all
sites [29]. In the case of the cluster states however, only
unitaries between the nearest neighbors have to be im-
plemented, and hence a simple VBS as depicted in Figure
2 is obtained.

As an example, let us explicitly construct the valence
bond states corresponding to arbitrary cluster states [30].
To each cluster state, one can associate a graph pa-
rameterized by its adjacency matrix Γ. The number
of qubits on each site in the VBS is of course equal to
the number of bonds of the given site, and is equal to
the number of vertices emanating from a given physi-
cal qubit. The bonds are maximally entangled states
|H〉 = |00〉+ |01〉+ |10〉−|11〉, and the projectors on each
site are all of the form P = |0̃〉〈00 . . . 0| + |1̃〉〈11 . . . 1|.
This simple construction describes all possible cluster
states.

This VBS interpretation of cluster states makes their
nice and appealing properties very explicit. The fact
that e.g. a singlet can be created between two arbitrary
qubits by doing appropriate local measurement on the
other ones can readily be understood by the concept of
entanglement swapping [20]. The entropy of a block of
spins can readily be seen to be given by the number of
bonds emanating from it (i.e. proportional to the area of
the surface of the block). The fact that the sensitivity to
noise of a cluster state does not scale with the number
of (physical) qubits [21], is of due to the fact that it is
effectively made up by local singlet pairs. This insight
also enables to construct distillation protocols for clus-
ter states by translating bipartite distillation protocols
to the valence bond picture [22].

On the other hand, the description of valence bond
states in terms of stabilizer states is also interesting from
the point a view of condensed matter theory. It is e.g.
well-known that operations of the Clifford group acting
on a stabilizer state can easily be simulated efficiently
classically. This implies that evolutions generated by the
Clifford group on VBS-states can be simulated efficiently,
and correlation functions of products of Pauli operators
can easily calculated. On the other hand, the possibil-
ity to do quantum computation with VBS using local
measurements only proves that the complexity-class for
calculating general expectation values on 2-D VBS is the
same as the complexity class of quantum computating.

The present study also opens the question whether
there exist ground states of (gapped) Hamiltonians in-

volving only 2-body short-range interactions on a lattice
that would enable to implement the presented measure-
ment scheme (this is not the case for cluster states). Such
2-D Valence Bond Solids indeed exist for higher spins
(e.g. spin 3/2), and it is trivial do devise a toy model
for which this holds. Consider e.g. a hexagonal lattice
with spin-7/2 particles at each vertex. To each parti-
cle corresponds a 8-dimensional Hilbert space, which we
can interpret as a system of 3 qubits. We associate each
outgoing edge to one of these qubits, and associate the

Hamiltonian ~S~S+311 to two of these qubits connected by
an edge. One readily sees that the ground state on such a
hexagonal lattice with this 2-body local Hamiltonian will
be unique, and that the teleportation scheme can be im-
plemented perfectly on it. Note that the cluster state is
very similar to that construction, but there the 3 qubits
are interpreted as virtual qubits and a smart projection
was used to reduce the dimension of the effective Hilbert
space.

More interestingly, the trick used to implement 2-qubit
unitary gates by introducing a virtual singlet followed by
a projection - this is the way cluster states can be gen-
erated from completely separable ones - can also be ex-
tended to the case where the unitaries do not commute
with each other. Indeed, the cluster state can be made
in the lab if an Ising interaction can be implemented on
neighboring qubits [23]. However, in some experimental
setups, it is not always possible to implement such com-
muting gates, as is the case e.g. for quantum dots [24]:
here one is essentially restricted to implement 2-qubit
gates generated by the Heisenberg interaction, which cer-
tainly do not commute when acting on neighboring spins.
However, if one can apply these unitary gates sequen-
tially (i.e. one has control over the sites on which one
implements the gate), then it is also possible to construct
valence bond solids that are suitable for quantum com-
putation.

The present results also prove that the valence bond
solid picture is very useful for understanding multipartite
entanglement. Indeed, VBS are particularly interesting
from the point a view of quantum information theory,
as the simple and elegant tools developed for bipartite
quantum systems can be applied to it (see e.g. [13]).
Moreover, one can readily see that the VBS form a dense
subset of all possible quantum states if one allows the
bonds to extend beyond nearest neighbors, if the singlets
are replaced by higher dimensional maximally entangled
states and if the projectors can be chosen arbitrary (e.g.
in the case of 3 qubits, every state can be made by con-
sidering 2 singlets and projecting 2 qubits of them onto a
qubit space [25]). It would be very interesting to develop
a general theory of multiparticle entanglement based on
this VBS-picture, where one could construct entangle-
ment measures that quantify the valence bond resources
needed to describe the state. This will be reported else-
where.

In conclusion, we have identified the entanglement
properties of the cluster states that are responsible for
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the possibility of universal quantum computation. The
main insight was given by the fact that the structure of
entanglement in these states is essentially bipartite and
can be understood in terms of valence bonds. This al-
lowed to prove the equivalence of the one-way computer
with teleportation-based computation schemes, and to
clarify the special features of the cluster states.
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