1,285 research outputs found

    Effects of aging on cerebral oxygenation during working-memory performance: A functional near-infrared spectroscopy study

    Get PDF
    Contains fulltext : 102484.pdf (publisher's version ) (Open Access)Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during working-memory performance using functional Near-Infrared Spectroscopy (fNIRS), a noninvasive neuroimaging technique. Seventeen healthy young (21–32 years) and 17 healthy older adults (64–81 years) performed a verbal working-memory task (n-back). Oxygenated and deoxygenated hemoglobin concentration changes were registered by two fNIRS channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition in older adults, but not in young participants. In both young and older adults, prefrontal activation increased with rising working-memory load. Young adults showed slight right-hemispheric dominance at low levels of working-memory load, while no hemispheric differences were apparent in older adults. Analysis of the time-activation curve during the high working-memory load condition revealed a continuous increase of the hemodynamic response in the young. In contrast to that, a quadratic pattern of activation was found in the older participants. Based on these results it could be hypothesized that young adults were better able to keep the prefrontal cortex recruited over a prolonged period of time. To conclude, already at low levels of working-memory load do older adults recruit both hemispheres, possibly in an attempt to compensate for the observed aging-related decline in performance. Also, our study shows that aging effects on the time course of the hemodynamic response must be taken into account in the interpretation of the results of neuroimaging studies that rely on blood oxygen levels, such as fMRI.11 p

    The influence of the biological pump on ocean chemistry:Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems

    Get PDF
    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this ‘biological pump’ have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long‐term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3‐dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom‐water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower‐than‐modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom‐water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has exerted a first‐order control on Earth system evolution across Phanerozoic time

    Elimination of adsorptive behaviour of biomolecules at the glass-solution interface in fluorescence correlation spectroscopy

    Get PDF
    We study adsorptive behaviour of biomolecules at the glass-solution interface in fluorescence correlation spectroscopy (FCS), and propose a negatively charged coating to eliminate the adsorption of molecules. In this article, we demonstrate confocal microscopic measurements on Cy3.5-90-mer-ssDNA and Cy3.5-90-bp-dsDNA in different solutions, and use two polymers – poly (acrylic acid, sodium salt) and poly (sodium 4-styrenesulfonate) to produce the negatively charged coating on glass coverslips. This technology enables more stable FCS measurements in extremely low concentration samples and reveals that the adsorptive behaviour of biomolecules is responsible for sudden disappearance of many iomolecules in low concentration solutions
    • 

    corecore