10,446 research outputs found

    Inflorescence stem grafting made easy in Arabidopsis

    Get PDF
    UNLABELLED BACKGROUND Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting) have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. RESULTS Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87%) grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of newly formed vascular connections, parenchyma tissue and lignin accumulation, supporting the presumed success of the graft union between two sections of the primary inflorescence stem. CONCLUSIONS We describe a simple and reliable method for grafting sections of an Arabidopsis inflorescence stem. This step-by-step protocol facilitates laboratories without grafting experience to further explore the molecular and chemical signalling which coordinates communications between the shoot and reproductive tissues

    Computation of Kolmogorov's Constant in Magnetohydrodynamic Turbulence

    Get PDF
    In this paper we calculate Kolmogorov's constant for magnetohydrodynamic turbulence to one loop order in perturbation theory using the direct interaction approximation technique of Kraichnan. We have computed the constants for various Eu(k)/Eb(k)E^u(k)/E^b(k), i.e., fluid to magnetic energy ratios when the normalized cross helicity is zero. We find that KK increases from 1.47 to 4.12 as we go from fully fluid case (Eb=0)(E^b=0) to a situation when Eu/Eb=0.5% E^u/E^b=0.5, then it decreases to 3.55 in a fully magnetic limit (Eu=0)(E^u=0). When Eu/Eb=1E^u/E^b=1, we find that K=3.43K=3.43.Comment: Latex, 10 pages, no figures, To appear in Euro. Phys. Lett., 199

    Nonlinear electrostatic oscillations in a cold magnetized electron-positron plasma

    Full text link
    We study the spatio-temporal evolution of the nonlinear electrostatic oscillations in a cold magnetized electron-positron (e-p) plasma using both analytics and simulations. Using a perturbative method we demonstrate that the nonlinear solutions change significantly when a pure electrostatic mode is excited at the linear level instead of a mixed upper-hybrid and zero-frequency mode that is considered in a recent study. The pure electrostatic oscillations undergo phase mixing nonlinearly. However, the presence of the magnetic field significantly delays the phase-mixing compared to that observed in the corresponding unmagnetized plasma. Using 1D PIC simulations we then analyze the damping of the primary modes of the pure oscillations in detail and infer the dependence of the phase-mixing time on the magnetic field and the amplitude of the oscillations. The results are remarkably different from those found for the mixed upper-hybrid mode mentioned above. Exploiting the symmetry of the e-p plasma we then explain a generalized symmetry of our non-linear solutions. The symmetry allows us to construct a unique nonlinear solution up to the second order which does not show any signature of phase mixing but results in a nonlinear wave traveling at upper-hybrid frequency. Our investigations have relevance for laboratory/astrophysical e-p plasmas

    Interval structure of the Pieri formula for Grothendieck polynomials

    Get PDF
    We give a combinatorial interpretation of a Pieri formula for double Grothendieck polynomials in terms of an interval of the Bruhat order. Another description had been given by Lenart and Postnikov in terms of chain enumerations. We use Lascoux's interpretation of a product of Grothendieck polynomials as a product of two kinds of generators of the 0-Hecke algebra, or sorting operators. In this way we obtain a direct proof of the result of Lenart and Postnikov and then prove that the set of permutations occuring in the result is actually an interval of the Bruhat order.Comment: 27 page

    Optimal Data-Dependent Hashing for Approximate Near Neighbors

    Full text link
    We show an optimal data-dependent hashing scheme for the approximate near neighbor problem. For an nn-point data set in a dd-dimensional space our data structure achieves query time O(dnρ+o(1))O(d n^{\rho+o(1)}) and space O(n1+ρ+o(1)+dn)O(n^{1+\rho+o(1)} + dn), where ρ=12c21\rho=\tfrac{1}{2c^2-1} for the Euclidean space and approximation c>1c>1. For the Hamming space, we obtain an exponent of ρ=12c1\rho=\tfrac{1}{2c-1}. Our result completes the direction set forth in [AINR14] who gave a proof-of-concept that data-dependent hashing can outperform classical Locality Sensitive Hashing (LSH). In contrast to [AINR14], the new bound is not only optimal, but in fact improves over the best (optimal) LSH data structures [IM98,AI06] for all approximation factors c>1c>1. From the technical perspective, we proceed by decomposing an arbitrary dataset into several subsets that are, in a certain sense, pseudo-random.Comment: 36 pages, 5 figures, an extended abstract appeared in the proceedings of the 47th ACM Symposium on Theory of Computing (STOC 2015

    Folding path and funnel scenarios for two small disulfide-bridged proteins

    Get PDF

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3
    corecore