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INTERVAL STRUCTURE OF THE PIERI FORMULA
FOR GROTHENDIECK POLYNOMIALS

VIVIANE PONS

Abstract. We give a combinatorial interpretation of a Pieri for-
mula for double Grothendieck polynomials in terms of an interval
of the Bruhat order. Another description had been given by Lenart
and Postnikov in terms of chain enumerations. We use Lascoux’s
interpretation of a product of Grothendieck polynomials as a prod-
uct of two kinds of generators of the 0-Hecke algebra, or sorting
operators. In this way, we obtain a direct proof of the result of
Lenart and Postnikov and then prove that the set of permutations
occuring in the result is actually an interval of the Bruhat order.

1. Introduction

Schubert calculus is an old topic in algebraic geometry. Originally,
it involves counting lines satisfying some intersection conditions, which
amounts to finding the cardinalities of some zero-dimensional inter-
sections of Schubert subvarieties in a Grassmanian. This is done by
working in the cohomology or in the Chow ring, a quotient of the ring
of symmetric functions in which Schubert varieties are represented by
Schur functions (see, e.g., [3]).

Modern intersection theory deals with more refined intersection con-
ditions between chains of subspaces (flags), and even between flag bun-
dles over algebraic varieties [4]. This involves computing in the coho-
mology, equivariant cohomology, K-theory (or Grothendieck ring) and
equivariant K-theory of the flag manifold, whoses bases are respectively
the Schubert polynomials, double Schubert polynomials, Grothendieck
polynomials and double Grothendieck polynomials, all of which have
been introduced by Lascoux and Schützenberger [6, 5].

Despite their geometric origin, these polynomials admit elementary
definitions and are of interest for combinatorics. In the case of the flag
variety relative to GL(n,C), the cohomology ring and the Grothendieck
ring can be interpreted as quotients of the ring of polynomials in
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x1, . . . , xn, with divided differences ∂i operating in the first case and
isobaric divided differences πi in the second case. The natural bases,
Schubert polynomials and Grothendieck polynomials, corresponding
to the Schubert varieties, can be defined as follows. Let us recall that
the symmetric group Sn is generated by the elementary transpositions
si = (i, i + 1) with 1 ≤ i < n. It acts on multivariate polynomials
by switching the variables (si switches xi and xi+1). The divided dif-
ferences and isobaric divided differences are two deformations of this
action:

∂i := (1− si)
1

xi − xi+1

,(1)

πi := xi∂i.(2)

where operators act on their left. It is convenient to introduce a second
set of isobaric divided differences,

(3) π̂i := ∂ixi+1 = πi − 1.

All families ∂i, πi and π̂i satisfy the braid relations, together with
quadratic relations which are

(4) ∂i∂i = 0, (5) πiπi = πi, (6) π̂iπ̂i = −π̂i.

The πi and π̂i, i = 1, . . . , n−1, both generate the 0-Hecke algebra of
Sn. Although relations between them are simple, there is no general
combinatorial description of products involving both types of operators.

They are used to generate two families of Grothendieck polynomi-
als, (G(σ))σ∈Sn and (Ĝ(σ))σ∈Sn , or of Key polynomials (Kv)v∈Nn and

(K̂v)v∈Nn . By definition, the operators πi (resp. π̂i) act on G(σ) or Kv

(resp. Ĝ(σ) and K̂v) as sorting operators on the indices. More pre-
cisely, let y1, . . . , yn be a second set of variables, we define dominant
Grothendieck polynomials and dominant Key polynomials by

G(ω) :=
∏
i=1...n
j=1...n−i

(1− yjx−1i ),(7)

Kλ = K̂λ := xλ11 x
λ2
2 . . . xλnn ,(8)

where ω = [n, n − 1, . . . , 1] is the maximal permutation of size n, and
λ = (λ1, . . . , λn) is a dominant vector, i.e., λ1≥λ2≥ . . .≥λn. One can

also define Ĝ(ω) but we do not need it. The Grothendieck polynomials
are all the different images of the dominant polynomial by iterations
of the operators πi:

(9) G(σsi) = G(σ)πi
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if σ(i) > σ(i + 1). The same definition holds for Key polynomials, si
acting on a vector v rather than on a permutation. One uses the π̂i to
define the (K̂σ) or (Ĝ(σ)) bases.

Grothendieck polynomials form a linear basis of the space of multi-
variate polynomials, regarded as a free module over the ring of sym-
metric polynomials. Thus, an interesting problem is to understand the
product in terms of this basis. For symmetric functions, the prod-
uct is completely determined by the Pieri formula, which describes
the product of a Schur function by a complete function [11]. On the
Grothendieck basis, an analogue operation would be to expand the
product G(σ)G(sk) where sk is a simple transposition. This is indeed
sufficient to completely characterize the multiplicative structure of the
Grothendieck ring. Let us recall that

(10) G(sk) = 1− y1 . . . yk
x1 . . . xk

.

In [5, Theorem 6.4], Lascoux gives the following interpretation of this
product in terms of π and π̂.

Theorem 1.1. (Lascoux) Let σ ∈ Sn and 1 ≤ k < n. Let ζ = ζ(σ, k)
be the element of the coset σ(Sk × Sn−k) with maximal length, i.e.,
ζ(1)>ζ(2)> · · · >ζ(k) and ζ(k + 1)> · · · >ζ(n). Then, modulo the
ideal Sym(x) = Sym(y), that is identifying a symmetric function of x
with the same function of y, one has

(11) G(σ)
yσ1 · · · yσk
x1 · · ·xk

≡ G(ω)π̂ωζπζ−1σ,

where if si1 . . . sim is a reduced decomposition of a permutation µ, then
πµ = πi1 . . . πim and π̂µ = π̂i1 . . . π̂im.

This shows that the Pieri formula for Grothendieck polynomials can
be calculated from the formal expansion of a product of sorting opera-
tors. In [10, Corollary 8.2], Lenart and Postnikov give a combinatorial
interpretation of this expansion for all types in terms of chains of the
Bruhat order. In type A, it has the following description.

Theorem 1.2. (Lenart and Postnikov) Given a simple transposition
sk, we form the list of transpositions (r1, . . . r`) = ((1, n), (2, n), . . . , (k, n),
(1, n− 1), . . . , (k, n− 1), . . . , (1, k + 1), . . . , (k, k + 1)). Then

(12) G(σ)G(sk) ≡ G(σ) −
y1 . . . yk
yσ1 . . . yσk

∑
J

(−1)|J |G(w(J))

where the sum is over subsets J = (j1 < j2 · · · < js) of (1, . . . , `) such
that σ l σrj1 l σrj1rj2 l · · · l σrj1 . . . rjs = w(J) is a saturated chain
in the Bruhat order from σ to w(J). In other words, J is a path in
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the Bruhat Hasse diagram between σ and w(J). The sum is cancella-
tion free and the coefficients are either 1 or −1 (each permutation is
obtained in at most one chain).

This theorem actually describes the product as an enumeration of
chains in the Bruhat order. Indeed, the sign of each element Gw(J) is
given by the length of J , or equivalently by `(w(J))− `(σ) where `(µ)
is the length of the permutation µ: the size of a reduced decomposition
of µ is terms of simple transpositions. In this article, by a better
understanding of the mixed product of π and π̂ given in Theorem 1.1,
we prove that this chain enumeration is actually an interval of the
Bruhat order.

Theorem 1.3. Let us denote by η(σ, k) (or simply η if there is no
ambiguity) the subset w(Jmax) of maximal length obtained in the enu-
meration described in Theorem 1.2. Then

(13) G(σ)
yσ1 · · · yσk
x1 · · ·xk

≡
∑
σ≤µ≤η

(−1)`(µ)−`(σ)Gµ.

Theorems 1.1 and 1.2 give us that

(14) G(ω)π̂ωζπζ−1σ =
∑
J

(−1)|J |G(w(J))

where the sum runs over subsets J as described in Theorem 1.2. Our
approach is to retrieve this result directly by studying the operators π̂
and π and to prove that the support of the sum is an interval. In Section
2, we first recall the definition of the Bruhat order and a few properties
that will be needed in the sequel. Then, we explain the interpretation
of the π and π̂ operators in terms of the 0-Hecke algebra and of sorting
operators. We then introduce two families of formal objects K and
K̂ acted on by the 0-Hecke algebra, that can be interpreted either as
Grothendieck polynomials or as Key polynomials.

The first step of the proof of Theorem 1.3 is given in Section 3,
Corollary 3.3. After an expansion of (14) in the K̂ basis and a change
of basis, we prove that the support of the sum is closed by interval, i.e.
if Gµ appears in the sum, then for all ν such that σ ≤ ν ≤ µ, Gν appers
in the sum. In Section 4, we study more closely the enumeration of
Theorem 1.2, we give a more precise description of it and prove a few
important properties. The direct proof of (14) is done in Section 4.3.

Our main result is proved in Section 5 where we show that the sum
has a unique maximal element, which by Corollary 3.3 makes it an in-
terval. This is done by a direct characterization of the chains appearing
in the enumeration.
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In Section 6, we give a generalized version of the Bruhat chain enu-
meration of Theorem 1.2. This new enumeration has no known in-
terpretation in terms of product of polynomials but computes a more
general mixed product of operators π̂ and π.

2. Background

2.1. Bruhat and k-Bruhat order. Theorems 1.2 and 1.3 both rely
on the Bruhat order on permutations. In this Section, we recall the
definition and properties of comparisons between permutations that we
shall use constantly in our proofs. These properties can be found in
[7], where the structure of the Bruhat order is investigated in detail.
The following definition can be found in [2].

Definition 2.1. Let µ, σ be two elements of Sn. We say that µ is
smaller than σ and we write µ ≤ σ if some subword of some reduced
decomposition of σ is a reduced decomposition of µ.

Note that the Bruhat order contains both the left and right weak
orders on permutations but is not their union. Also, the definition is
symmetric, if µ ≤ σ then µ−1 ≤ σ−1 and it is equivalent to this local
form:

Definition 2.2. µ is a successor of σ for the Bruhat order if there
is a transposition τ such that στ = µ and `(µ) = `(σ) + 1. Such a
transposition τ is called a Bruhat transposition of the permutation σ.

If such a transposition exists, then there is also a transposition τ ′

such that τ ′σ = µ and the symmetry is preserved. Ehresmann gives
another criterion (historically, the first one), also described in [7].

Proposition 2.3. Let µ, σ ∈ Sn.

σ ≤ µ⇔(∀h, 1 ≤ h < n), (∀`, 1 ≤ ` < n)

#{y ∈ ph(σ1, . . . σ`)} ≤ #{y ∈ ph(µ1, . . . , µ`)}(15)

where ph is the projection of a permutation word on the alphabet {x, y}
by sending 1, . . . , h on x, and h+1, . . . , n on y. This is equivalent to say
that all reordered left factors of σ are smaller or equal componentwise
than the reordered left factors of the same size of µ.

As an example, if σ = 2143 and µ = 4132, then σ ≤ µ. One has
that {2} ≤ {4}, {2, 1} ≤ {4, 1}, {4, 2, 1} ≤ {4, 3, 1}. Or equivalently,
all projections of σ on the alphabet {x, y} (yxyy, xxyy, and xxyx re-
spectively) have less y in their left factors than the corresponding pro-
jections of µ (yxyy, yxyx, and yxxx respectively). In this Proposition,
we compare left factors of the permutation and the symmetry seems
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broken. But actually, a more general criterion based on comparisons
with bigrasmannian permutations can be given where the symmetry
appears clearly. In this article, we shall often use a symmetry with
respect to our parameter k, so this second criterion is essential for us.
It is also described in [7].

Proposition 2.4. We have σ ≤ µ if and only if there exists k with
1 ≤ k ≤ n such that for all 1 ≤ h < n, and for all 1 ≤ ` ≤ k and
k < `′ ≤ n, we have

#{y ∈ ph(σ1, . . . σ`)} ≤ #{y ∈ ph(µ1, . . . , µ`)} and(16)

#{y ∈ ph(σ`′ , . . . σn)} ≥ #{y ∈ ph(µ`′ , . . . , µn)}.(17)

If it is true for some k, then it is true for all k and (15) corresponds
to k = n.

As an example, to obtain as above σ = 2143 ≤ µ = 4132, one can
compare the first two left and right factors: {2} ≤ {4}, {2, 1} ≤ {4, 1},
{3} ≥ {2} and {4, 3} ≥ {3, 2}.

We also need the notion of k-Bruhat order, ≤k, which was introduced
in [6] and studied in [1].

Definition 2.5. τ = (a, b) is a k-Bruhat transposition of σ if τ is a
Bruhat transposition of σ by Definition 2.2, and a ≤ k < b. If τ is a
k-Bruhat transposition of σ and µ = στ , then µ is a successor of σ for
the k-Bruhat order.

There is also a characterization of the k-Bruhat order given in [1,
Theorem 1.1.2].

Theorem 2.6. Let µ, σ ∈ Sn, then σ ≤k µ if and only if,

(i) a ≤ k implies σ(a) ≤ µ(a), and, b > k implies σ(b) ≥ µ(b)
(ii) If a < b, σ(a) < σ(b) and µ(a) > µ(b) then a ≤ k < b.

2.2. Sorting operators, the generators of the 0-Hecke algebra.
The main purpose of this article is to compute the product of π and π̂
operators (14). These operators are actually generators of the 0-Hecke
algebra. In this Section, we give the main properties of these two
families and explain how they are linked to the Bruhat order. Then,
we interpret them as sorting operators and give a formal framework in
which our problem can be expressed clearly.
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The Hecke algebra of the symmetric group Sn, H(t1, t2), is the alge-
bra generated by the elements {Ti, 1 ≤ i ≤ n− 1} and relations

TiTj = TjTi, if |i− j| > 1,(18)

Ti+1TiTi+1 = TiTi+1Ti, if 1 ≤ i ≤ n− 2,(19)

(Ti − t1)(Ti − t2) = 0(20)

where t1 and t2 are two scalar parameters that commute with the Ti.
The relations (18) and (19) are the braid relations whereas (20) is the
quadratic relation. The algebra has a natural basis (Tσ)σ∈Sn where, for
si1 . . . sim a reduced decomposition of σ,

(21) Tσ = Ti1 . . . Tim .

The 0-Hecke algebra is the specialization of H(t1, t2) where t2 =
0 and t1 = 1. With these parameters, its generators Ti now satisfy
the quadratic relation (5), we then call them πi and their action on
polynomials is described by (2). The family π = (πσ)σ∈Sn forms a
basis of the 0-Hecke algebra. Now, if we set

(22) π̂i = πi − 1,

these π̂i are consistent with their definition in Section 1 and also satisfy
the braid relations (18) and (19) as well as the quadratic relation (20)
with specialization t2 = 0 and t1 = −1, that is (6). Thus the family π̂ =
(π̂σ)σ∈Sn constitutes a second basis of the 0-Hecke algebra generated
by the πi. The change of basis between π and π̂ is directly related to
the Bruhat order on permutations.

By (22), we have π̂σ = (πi1−1)(πi2−1) . . . (πim−1), where si1si2 . . . sim
is a reduced decomposition of σ, and one can prove the following prop-
erty.

Proposition 2.7. Let µ, σ be two elements of Sn. Then πσ (respec-
tively π̂σ) can be expanded in the basis π̂ (respectively π) by a sum over
the Bruhat order

π̂σ =
∑
µ≤σ

(−1)`(µ)−`(σ)πµ,(23)

πσ =
∑
µ≤σ

π̂µ.(24)

The fact that πσ is a sum over π̂µ where µ ≤ σ is obvious by (22).
One has only to prove that the multiplicity of each element of the sum
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is 1, i.e., that the non-reduced words in (π̂i1 + 1)(π̂i2 + 1) . . . (π̂im + 1)
cancel. This has been done in [5, Lemma 1.13].

Although the relations between π and π̂ are simply expressed by
(22), and both bases are well-known, the general description of mixed
products of both πi and π̂i is an open problem. In this article, we
compute the specific product of π and π̂ given in Section 1.

The 0-Hecke algebra admits a faithful realization by sorting opera-
tors. Let K = (Kσ)σ∈Sn and K̂ = (K̂σ)σ∈Sn , then the actions of πi and

π̂i on the free modules spanned by the Kσ and the K̂σ are

(25) Kσπi =

{
Kσsi if σi > σi+1,

Kσ otherwise,

(26) K̂σπ̂i =

{
K̂σsi if σi > σi+1,

−K̂σ otherwise,

where si is the simple transposition switching σi and σi+1. One can
check that (25) and (26) are consistent with the braid relations (18)
and (19). The case where σi ≤ σi+1 is implied by the quadratic relation
(20). Now, we set

(27) Kω = K̂ω

where ω = [n, n− 1, . . . , 1] is the maximal permutation. Thus K and

K̂ are two bases of the same module. The change of basis between K
and K̂ is a direct corollary of relations (23) and (24):

K̂σ =
∑
µ≥σ

(−1)`(µ)−`(σ)Kµ,(28)

Kσ =
∑
µ≥σ

K̂µ.(29)

The Kσ and K̂σ can be mapped to either Grothendieck polynomials
or Key polynomials (Demazure characters for type A) by sending Kω

to (7) or to (8). Expanding

(30) Kωπ̂ωζπζ−1σ

on the K basis is equivalent to expanding (11) on Grothendieck poly-
nomials. The two kinds of sorting operators πi and π̂i give us the
flexibility of working with two bases that correspond to two different
actions of the 0-Hecke algebra.
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3. Closure by interval

Mixed products of operators of both types π and π̂ are not well de-
scribed in general. But we have from Theorem 1.2 that the expansion
of (30) in the K basis is a sum over a set of permutations with co-
efficients 1 or −1 depending on the length of the permutation. The
purpose of this section is to prove that this set is closed by interval,
our first step towards the proof of Theorem 1.3.

Expression (30) can be expanded in both bases K and K̂. Actually,

the expansion in the K̂ basis is easier, we give it in Proposition 3.1.
Then, by a change of basis, we obtain a first description of the expan-
sion in the K basis (Proposition 3.2). This leads directly to Corollary
3.3, the main result of the Section.

The first part of the computation of (30) consists in applying the π̂i
operators. This is directly given by the definition of the operators and
can be easily expressed on both bases K and K̂. One has

Kωπ̂ωζ = K̂ωπ̂ωζ(31)

= K̂ζ(32)

=
∑
µ≥ζ

(−1)`(µ)−`(ζ)Kµ.(33)

A reduced decomposition of ωζ = si1si2 . . . si`(ω)−`(ζ) corresponds to
a path in the weak order between the maximal permutation ω and
ζ. It divides the values 1, . . . , n into two blocks: to the left or to the
right of k. The product π̂ωζ is reduced and applied to the maximal
permutation, and so we obtain (32), or by a change of basis (33). Now,
a reduced decomposition of ζ−1σ, used for the product of π operators,
is a path in the weak order between ζ and σ: it rearranges the values
inside the two blocks left of k and right of k and does not contain any
transposition sk. One can apply the πζ−1σ operators starting either
from the point given in (32), or from the sum over the interval [ζ, ω] in
(33). In this Section, we shall consider the first approach.

Proposition 3.1. Let σ, k, and ζ be as in Theorem 1.1, then

(34) Kωπ̂ωζπζ−1σ =
∑
ζ≥µ≥σ

K̂µ.

Proof. We start from (32) and apply the πi operators.

(35) K̂ζπζ−1σ = K̂ζ

∑
ν≤ζ−1σ

π̂ν .
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This leads directly to (34), as every subword ν of a reduced decomposi-
tion of ζ−1σ is an element of Sk×Sn−k. The permutation ζ is divided
into two blocks, ζ(1) > · · · > ζ(k) and ζ(k + 1) > · · · > ζ(n). Each
operator sorts the permutation either in the left block or in the right
block. �

Note that the interval [σ, ζ] is actually the coset σ(Sk×Sn−k). From
Proposition 3.1, one can obtain an expansion of (30) on the K basis
by applying a change of basis to the sum (34).

Proposition 3.2. Let Succs−kσ be the set of successors of σ, σ′ = στ
where τ is not a k-transposition of σ. Then (30) expanded on the K
basis is equal to

(36)
∑

(−1)`(ν)−`(σ)Kν

summing over permutations ν such that ν ≥ σ and, ∀σ′ ∈ Succs−kσ ,
ν � σ′.

Assuming this proposition, the fact that this set is closed by interval
follows immediately.

Corollary 3.3. If Kν appears in the sum, then ∀ν ′ ∈ [σ, ν], Kν′ appears
in the sum.

To prove Proposition 3.2, we need the following Lemma on the
Bruhat order.

Lemma 3.4. For σ, ν two permutations of Sn such that ν > σ, and
k < n, then the intersection of the coset σ(Sk×Sn−k) and the interval
[σ, ν] is an interval of the Bruhat order.

Proof. Note that the Bruhat order is not a lattice and so, in general,
the intersection of two intervals is not an interval : we need to prove
that the intersection contains a unique maximal element.

For σ ∈ Sn, the coset σ(Sk ×Sn−k) corresponds to permutations µ
with {µ1, . . . , µk} = {σ1, . . . , σk}. We first describe the construction of
the maximal element, ν̃, and then prove that it is indeed maximal.

We set V1 = {σ1, . . . , σk}, then ν̃1 = max(v ∈ V1 ; v ≤ ν1). Now
V2 = V1 \ {ν̃1}, and ν̃2 = max(v ∈ V2 ; v ≤ ν2). We continue this
construction up to ν̃k. For the right part of the permutation, we take
Vn = {σk+1, . . . , σn} and ν̃n = min(v ∈ Vn ; v ≥ νn), then Vn−1 =
Vn \ {ν̃n} and we continue up to ν̃k+1. As an example, for σ = 13245,
k = 2 and ν = 54123, we have ν̃ = 31524.

Firstly, as ν > σ, we can always construct ν̃. Indeed, for i ≤ k, let
vmin = min(v ∈ Vi). By construction, we have that #{σj < vmin ; 1 ≤
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j ≤ k} = #{ν̃j < vmin ; 1 ≤ j ≤ i−1} = #{νj < vmin ; 1 ≤ j ≤ i−1},
and we also have by Bruhat that #{σj < vmin ; 1 ≤ j ≤ k} ≥ #{νj <
vmin ; 1 ≤ j ≤ k}, which tells us that vmin ≤ νi. A similar argument
can be given for i > k. It is also clear that ν̃ is in the coset σ(Sk×Sn−k)
and that ν̃ ≤ ν.

Next, let us take µ ∈ σ(Sk × Sn−k) with µ ≤ ν and prove that
µ ≤ ν̃. If we assume that µ � ν̃, this means there is 1 ≤ h ≤ n and
1 ≤ i < n such that

(37) #{µj ≥ h ; 1 ≤ j ≤ i} > #{ν̃j ≥ h ; 1 ≤ j ≤ i}.
We may assume that i < k, otherwise we can have a similar proof by
working on right factors. Obviously, this means that {µj ; 1 ≤ j ≤
i} 6= {ν̃j ; 1 ≤ j ≤ i} and more precisely, there is 1 ≤ ` ≤ i such that
µ` ≥ k and µ` ∈ {ν̃j ; i < j ≤ k}. We take µ` minimal. Now we have:

(38) µ` ≤ ν̃j ⇔ µ` ≤ νj

for 1 ≤ j ≤ i. We already had that µ` ≤ ν̃j implied µ` ≤ νj. Then,
if µ` ≤ νj, as µ` ∈ Vj and ν̃j is maximal among v ≤ νj in Vj, we have
µ` ≤ ν̃j. From (37) and (38), we can now prove

#{µj ≥ µ` ; 1 ≤ j ≤ i} >#{ν̃j ≥ µ` ; 1 ≤ j ≤ i}(39)

= #{νj ≥ µ` ; 1 ≤ j ≤ i}(40)

which contradicts the fact that µ ≤ ν. The equality is given by (38).
Now, as we have taken µ` minimal, if µj ≥ h in (37) and µj /∈ {ν̃j′ ; 1 ≤
j′ ≤ i}, then µj ≥ µ` which proves the first inequality. So we cannot
have (37) and ν̃ is maximal.

�

Proof of Proposition 3.2. By a change of basis in the sum (34), one has

∑
ζ≥µ≥σ

K̂µ =
∑
ζ≥µ≥σ

∑
ν≥µ

(−1)`(ν)−`(µ)Kν(41)

=
∑
ν≥σ

cνKν(42)

where

(43) cν =
∑
µ≤ν

σ≤µ≤ζ

(−1)`(ν)−`(µ).

By [14], cν is a sum of values of the Möbius function of ν and µ. Lemma
3.4 tells us that cν is always a sum over an interval. Consequently, we
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have cν 6= 0 only when this interval is reduced to a single element σ,
i.e., when there is no µ such that σ < µ ≤ ζ and µ ≤ ν. It is sufficient
to test only the direct successors of σ in [σ, ζ] which correspond exactly
to Succs−kσ .

�

4. Sum over chains of the k-Bruhat order

In this Section, we give a more precise description of the enumeration
of Theorem 1.2. We explain how the list of transpositions can be
reduced to the size of the maximal chain and how the order is a linear
extension of a partial order on transpositions. Then, we give a new
proof of the Theorem based on the formula of Theorem 1.1 and on the
study of the mixed product of π̂ and π operators (30). We also prove
some properties of the enumeration that will be used in the proof of
our main result in Section 5.

4.1. Description.

Definition 4.1. Let σ ∈ Sn and 1 ≤ k < n. Let Wσ,k be the list of
k-Bruhat transpositions of σ, endowed with a total order on its trans-
positions defined by:

(44) (a, b) ≺ (a′, b′)⇔ σ(a) > σ(a′) or (a = a′ and σ(b) < σ(b′))

Note that the relation ≺ depends on the permutation σ and so we
can only compare transpositions within a given list Wσ,k. We shall see
that a partial order on transpositions, not depending on σ, can also be
defined, and that ≺ is a linear extension of this partial order.

The following Proposition is an alternative formulation of Theorem
1.2 as explained in Section 4.2. We shall give a direct proof of it in
Section 4.3.

Proposition 4.2. If Wσ,k = (τ1 ≺ τ2 ≺ · · · ≺ τm), then

(45) Kωπ̂ωζπζ−1σ = Eσ

where

(46) Eσ := Kσ · (1− τ1) · (1− τ2) · · · (1− τm)

and

(47) Kµ · τ =

{
Kµτ if τ is a Bruhat transposition of µ,

0 otherwise.



PIERI FORMULA FOR GROTHENDIECK POLYNOMIALS 13

In other words, Eσ is a signed sum over subwords of Wσ which are
valid paths starting from σ in the Bruhat order graph. We call such a
subword simply a valid path. For example: if σ = 1362|54, k = 4, then
Wσ = ((2, 6), (2, 5), (4, 6), (4, 5)) and

(48) E1362|54 = K1362|54 ·(1−(2, 6)) ·(1−(2, 5)) ·(1−(4, 6)) ·(1−(4, 5)).

When expanded, Eσ can be represented as a tree which is a subgraph
of the Bruhat order (Fig. 1).

+K1362|54

−K1462|53 −K1562|34 −K1364|52 −K1365|24

+K1562|43 +K1463|52 +K1465|23 +K1563|24 +K1365|42

−K1563|42 −K1564|23 −K1465|32

+K1564|32

(2,6) (2,5) (4,6)
(4,5)

(2,5) (4,6) (4,5) (4,5) (4,5)

(4,6) (4,5) (4,5)

(4,5)

Figure 1: The set E1362|54.

4.2. Partial order on k-transpositions. Theorem 1.2 uses a differ-
ent order than Definition 4.1, but both orders are linear extensions of
the following partial order.

Definition 4.3. We define a partial order on k-transpositions by

(a, c) C (a, b) if b < c,(49)

(a, c) C (b, c) if a < b.(50)

Lemma 4.4. The order ≺ defined in Definition 4.1 is a linear exten-
sion of C.

Proof. Let Wσ,k be as in Definition 4.1, and τ, τ ′ ∈ Wσ,k with τ C τ ′.
If τ = (a, c) and τ ′ = (a, b) with a < b < c, we have that σ(b) < σ(a)
or σ(b) > σ(c) because τ is a Bruhat transposition for σ. As τ ′ = (a, b)
is also a Bruhat transposition for σ, then σ(a) < σ(b) which makes
σ(b) > σ(c), so τ ≺ τ ′.

If τ = (a, c) and τ ′ = (b, c) with a < b < c, we still have σ(b) < σ(a)
or σ(b) > σ(c). And as τ ′ = (b, c) is a Bruhat transposition for σ, then
σ(b) < σ(c) which makes σ(b) < σ(a), so τ ≺ τ ′. �
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Corollary 4.5. Let τ, θ ∈ Wσ,k. If τ = (a, d), θ = (a, c), then τ ≺ θ
implies c < d. And if τ = (a, c), θ = (b, c), then τ ≺ θ implies a < b.

The proof is immediate. Lemma 4.4 and Corollary 4.5 will both
contribute to the proof of our main result in Section 5.

The order used in Theorem 1.2 is given explicitly in [8, Theorem
4.3] where the combinatorial interpretation of (12) in terms of Bruhat
chains was already proved for Grothendieck polynomials in one set of
variables. It is as follows:

(51) (a, b) ≺′ (c, d)⇔ b > d or (b = d and a < c).

It is clearly a linear extension of the partial order C.

Proposition 4.6. Let ≺′ be any linear extension of C. We define W ′
σ,k

and E′σ,k just as Wσ,k and Eσ,k by replacing ≺ by ≺′. Then E′σ,k = Eσ,k.

Proof. Let us notice that if τ and θ are two k-transpositions that are
not comparable by C, they commute. So if w′ = τ ′i1 ≺

′ · · · ≺′ τ ′ir is a
subword of W ′

σ,k, one can just reorder its transpositions for ≺ instead
of ≺′, w = τi1 ≺ · · · ≺ τir . Now, w is a subword of Wσ,k and w = w′

when seen as a permutation. �

It is now clear that if one takes a chain as in Proposition 4.2 and
reorder it in terms of ≺′, one obtains a chain as in Theorem 1.2. The
other way around is not obvious as the list of transpositions described
in Theorem 1.2 contains all k-transpositions whereas the ones in Wσ,k

depend on the permutation σ. But the list of transpositions of Theorem
1.2 can actually be reduced to Wσ,k.

Lemma 4.7. All transpositions appearing in the chains of Theorem
1.2 are Bruhat transpositions for the permutation σ.

Proof. Let τ1 ≺′ · · · ≺′ τ` be a chain of Theorem 1.2. Let us suppose
that τi = (a, b) is not a Bruhat transposition for σ. It means that there
exists c, a < c < b with σ(a) < σ(c) < σ(b). This order is not changed
by the transpositions τ1, . . . , τi−1. For 1 ≤ j < i, we set σ′ = στ1 . . . τj−1
and we suppose that we still have σ′(a) < σ′(c) < σ′(b). If τj = (a, y),
then b < y so a < c < y and σ′(c) > σ′(y). If τj = (c, y), then
c < b < y and σ′(b) > σ′(y). We cannot have τj = (y, c) because
τj ≺′ τi. If τj = (y, b), then y < a so y < c < b and σ′(c) < σ′(y).
By this, we have that τi is not a Bruhat transposition for στ1 . . . τi−1
which contradicts the definition of the chain. �

The fact that each permutation is obtained by exactly one chain is
given by [8, Proposition 4.8]. In [1, Algorithm 3.1.1], Bergeron and
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Sottile describe an algorithm that give a a saturated chain between
two permutations in the k-Bruhat order. It is compatible with the
partial order on transpositions we defined and can be used to obtain
the unique chain of transpositions corresponding to each permutation.
Another algorithm is also described in [9, Algorithm 4.9] that could be
used in that purpose. Both algorithms should allow for a direct proof of
the property that each permutation in the interval [σ, η] is associated
with a chain of the Lenart-Postinikov enumeration of Theorem 1.2.
We have shown this property algebraically in Corollary 3.3. It is not
enough to prove Theorem 1.3 as one also needs to prove that each
permutation of the sum is contained in the interval. This will be done
in Section 5.

4.3. Direct proof. We can prove Proposition 4.2 by applying the πi
operators to the sum over an interval given in (33). First let us see:

Proposition 4.8.

(52) Eζ,k =
∑
µ≥ζ

(−1)`(µ)−`(ζ)Kµ.

Proof. We know that the sign of each element Kµ of the sum Eζ,k is
given by (−1)`(µ)−`(ζ). So we can consider Eζ,k as a set and the definition
gives us that Eζ,k ⊂ [ζ, ω]. We only have to prove the reverse inclusion
[ζ, ω] ⊂ Eζ,k.

Let µ ∈ [ζ, ω]. We first prove that µ ≥k ζ. Proposition 2.3 implies
that µ and ζ satisfy Condition (i) of Theorem 2.6: for a ≤ k, the left
factor of size a of µ is greater than the left factor of size a of ζ and
ζ(1, . . . , k) is antidominant, so ζ(a) ≤ µ(a). For b > k, one uses that
the reordered right factor of size n− b of µ is smaller than, or equal to,
componentwise, the reordered right factor of size n− b of ζ. Condition
(ii) of Theorem 2.6 is also satisfied as for a < b, ζ(a) < ζ(b) implies
that a ≤ k < b. Consequently, we have µ ≥k ζ.

By using [1, Algorithm 3.1.1], one obtains a chain of the k-Bruhat
order between µ and ζ. The order on the transpositions is the one
described in Definition 4.1, and so if each transposition given by the
algorithm is in Wζ,k, we obtain a subword. The process is recursive, it
starts from µ and chooses a transposition (a, b) such that, a ≤ k < b,
µ(a) > µ(b) and ζ(a) < ζ(b). As we have ζ(i) < ζ(a) for a < i ≤ k,
and ζ(i) > ζ(b) for k < i < b, then (a, b) is a k-Bruhat transposition of
ζ and is in Wζ,k. �

From (33) and Proposition 4.8, we now have
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(53) Kωπ̂ωζπζ−1σ = Eζ,kπζ−1σ.

We can prove Proposition 4.2 by induction on the length of the prod-
uct πζ−1σ.

Proposition 4.9. Let σ ∈ Sn, and let us assume that (45) holds. Let
si be a simple transposition such that i 6= k and σsi < σ, then

(54) Eσ,kπi = Eσsi,k.

First, let us note the fact:

Lemma 4.10. Eσsi,k∩Eσ,k = ∅, and more precisely ∀ν ∈ Eσsi,k, ν ≯ σ.

Proof. If i ≤ k, let us consider |pσ(i)−1(ν1, . . . , νi)|y for ν ∈ Eσsi,k,
i.e., the number of values greater than or equal to σ(i) in left fac-
tors of size i. This number is constant on Eσsi,k and is equal to
|pσ(i)−1(σ(1), . . . σ(i))|y−1 as σsi(i) = σ(i + 1) < σ(i). And so, by
Proposition 2.3, ν cannot be greater than σ. The same argument ap-
plies when i > k, by considering the number of values smaller than or
equal to σ(i+ 1) in right factors of size n− i. �

Proposition 4.9 is a consequence of these two lemmas:

Lemma 4.11. We have the following implications:

(1) Let w = τi1 . . . τir be a subword of Wσ,k such that w is a valid
path starting from σ in the Bruhat graph, and µsi ≯ σ where
µ = σw. Then,

w′ = (siτi1si)(siτi2si) . . . (siτirsi)

is a subword of Wσsi,k and is a valid path in the Bruhat graph
starting from σsi.

(2) Conversely, if w′ = t1 . . . tr is a subword of Wσsi,k and a valid
path starting from σsi in the Bruhat graph, then

w = (sit1si) . . . (sitrsi)

is a subword of Wσ,k and a valid path in the Bruhat graph start-
ing from σ.

Lemma 4.12. Let µ ∈ Eσ,k with µsi > σ, then µsi ∈ Eσ,k.

Proof of Lemma 4.11. Implication (2) is trivial: it is immediate to see
that if a transposition t is a k-Bruhat transposition for σsi, then sitsi
is a k-Bruhat transposition for σ. Besides, the order on transposi-
tions is not changed, and so if t1 . . . tr is a subword of Wσsi,k then
(sit1si) . . . (sitrsi) is a subword Wσ,k.
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Now, let w = τi1 . . . τir be a valid subword of Wσ,k with µ = σw such
that µsi ≯ σ. For the purpose of the proof, we suppose that i < k. We
mostly use Proposition 2.3, the same proof can be made for i > k by
comparing right factors instead of left factors.

We first prove that for all permutations µ̃ that appear in the chain
between σ and µ given by w, we have µ̃si ≯ σ. As µsi ≯ σ, there is at
least one left factor of µsi that is not greater than the corresponding
factor of σ. However, all left factors of µ are greater than the factors
of σ. The only factor that is different between µ and µsi is {1, . . . , i}
and so we have

µsi(1, . . . , i) � σ(1, . . . , i) with(55)

µsi(1, . . . , i) = {µ(1), . . . , µ(i− 1), µ(i+ 1)}.(56)

As µ̃ <k µ, we know that µ̃(j) ≤ µ(j) for all j ≤ k and so µ̃si(1, . . . , i) �
σ(1, . . . , i).

We can now prove that for all transpositions τ of w, we have στ(i) >
στ(i + 1). We know that σ(i) > σ(i + 1) and i < k, so the only
transposition we have to consider is τ = (i+ 1, b). The transposition τ
is in w, let us say between two permutations ν and ν ′. We know that
ν ′si ≯ σ which gives {ν ′(1), . . . , ν ′(i− 1), ν ′(i+ 1)} � {σ(1), . . . , σ(i)}.
As ν ′ >k σ, we have ν ′(j) ≥ σ(j) for j ≤ i− 1 and necessarily, ν(b) =
ν ′(i+ 1) < σ(i).

Let us suppose that σ(b) > σ(i). Then, there is a transposition
(c, b) in w such that σ(c) < σ(i) < σ(b) which implies c > i. But
as (c, b) ≺ (i + 1, b), we have σ(i + 1) < σ(c) < σ(b) which implies
c < i + 1 and leads to a contradiction. So we have σ(b) < σ(i), i.e.,
στ(i) > στ(i+ 1).

It is now easy to check that for each transposition τ of w, siτsi is
a valid Bruhat transposition for σsi and so (siτi1si) . . . (siτirsi) is a
subword of Wσsi,k. The fact that this is a valid path comes from the
already given property that if ν and ν ′ = ντ are two permutations of
the chain, we have ν ′(i + 1) < ν(i). This makes siτsi a valid Bruhat
transposition for νsi.

�

Proof of Lemma 4.12. We use Proposition 3.2 which is true on Eσ,k
by our induction hypothesis. We show that if µ ∈ Eσ,k, there is no
σ′ ∈ Succs−kσ such that σ′ > µsi, which means µsi ∈ Eσ. This is trivial
for µ > µsi.
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Let us suppose µ < µsi and σ′ ∈ Succs−kσ such that σ′ > µsi. As for
Lemma 4.11, we set i < k without loss of generality. We have σ′ = στ
with τ = (a, b) a non-k Bruhat transposition.

Firstly we show that we necessarily have a ≤ i < b. All left factors
of µsi are greater than the left factors of σ′. There is at least one left
factor of µ that is not greater than the same one of σ′ and the only one
possible is {1, . . . , i}. Besides, we have µ(1, . . . , i) ≥ σ(1, . . . , i) and so
σ(1, . . . , i) 6= σ′(1, . . . , i).

Now we have:

(57) {j ≤ a ; σ(j) < σ(b)} = {j ≤ a ; µ(j) < σ(b)}.

As µ(j) ≥ σ(j), it is clear that we have an inclusion. If it is a strict
one, then there is c ≤ a with σ(c) < σ(b) and µ(c) ≥ σ(b). This
means that a transposition (c, d) has been applied with c < b < d and
σ(c) < σ(b) < σ(d) which is not possible.

We also have:

(58) {j ≤ a ; µ(j) < σ(b)} = {j ≤ a ; µsi(j) < σ(b)}.

If a < i, we have {j ≤ a ; µ(j)} = {j ≤ a ; µsi(j)} and (58) is true.
If a = i, we have σ(i+ 1) < σ(i) = σ(a) < σ(b) so µ(i) < σ(b) because
of (57). And, as b > i + 1, the argument used to prove (57) says that
µsi(i) = µ(i+ 1) < σ(b) which proves (58). So now we have:

#{j ≤ a ; µsi(j) < σ(b)} = #{j ≤ a ; σ(j) < σ(b)}(59)

= #{j ≤ a ; σ′(j) < σ(b)}+ 1,(60)

which by Proposition 2.3 says that µsi ≯ σ′ and leads to a contradic-
tion.

�

Proof of Proposition 4.9. One consequence of Lemma 4.11 is that

(61) Eσsi,k =

 ∑
µ∈Eσ,k
µsi≯σ

(−1)`(µ)−`(σ)Kµ

 πi.

Indeed, all elements Kµ in the above sum are sorted by the operator
πi because µsi ≯ σ implies that µsi < µ. Implication (1) of Lemma
4.11 tells us they are sent on elements of Eσsi,k and implication (2) tells
us that they cover the whole sum. Now, we have:
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(62) Eσ,kπi = Eσsi,k +
∑
µ∈Eσ,k
µsi>σ

(−1)`(µ)−`(σ)Kµπi.

By Lemma 4.12, the second part of the sum is equal to 0, as for each
element Kµ, its paired element Kµsi also appears in the sum with an
opposite sign. Let us assume that µsi < µ, then by definition of πi,
Kµπi = Kµsi and Kµsiπi = Kµsi . �

To illustrate this proof, one can draw the following example (Fig. 2).
Each elements of Eσ,k (on the left) is either paired by si to an element
of Eσsi,k (on the right) or to another element of Eσ,k.

+K1362|45

−K1462|35 −K1364|25

+K1463|25

+K1362|54

−K1462|53 −K1562|34 −K1364|52 −K1365|24

+K1562|43 +K1463|52 +K1465|23 +K1563|24 +K1365|42

−K1563|42 −K1564|23 −K1465|32

+K1564|32

Figure 2: E1362|54π5 = E1362|45

Also, Eσsi,k is actually a conjugate subtree of Eσ,k. The transpositions
of Wσ,k = (τ1, . . . τm) are the root branches of the tree. Proposition 4.11
tells us thatWσsi,k is a conjugate subword ofWσ,k: only transpositions τ
where siτsi is still a Bruhat transposition of σsi are kept. The operator
πi ”cuts” branches out of the Eσ tree and reduces its size exponentially
(Fig. 3).

5. Interval structure of Eσ,k

By Corollary 3.3, we have that Eσ,k is closed by interval, i.e., if
µ, ν ∈ Eσ,k with ν < µ, then [ν, µ] ⊂ Eσ,k. To prove that Eσ,k is an
interval, we now have to show that there is a unique minimal element
and a unique maximal element. The minimal element is by definition
σ and it is unique. The maximal element can only be σWσ,k, i.e., the
permutation where all transpositions of Wσ,k have been applied. It is
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+K1362|45

−K1462|35 −K1364|25

+K1463|25

+K1362|54

−K1462|53 −K1562|34 −K1364|52 −K1365|24

+K1562|43 +K1463|52 +K1465|23 +K1563|24 +K1365|42

−K1563|42 −K1564|23 −K1465|32

+K1564|32

× ×

× × × ×

× ×

×

Figure 3: Cutting branches

the only element with maximal length `(σ) + |Wσ,k|. So the proof of
Theorem 1.3 will be completed if we prove the following Lemma:

Lemma 5.1.

(63) ∀µ ∈ Eσ,k, µ ≤ η(σ, k)

where η(σ, k) = σWσ,k.

To prove Lemma 5.1, we need to study more precisely the structure
of Eσ,k.

Definition 5.2. Seeing Wσ,k = (τ1 ≺ · · · ≺ τm) as a word on transpo-
sitions, let w = τi1 . . . τir be a subword of Wσ,k. We say that w is not
compatible if:

(1) w contains (a, c)(b, d) as a subword with a < b < c < d,
(2) (a, d) ∈ Wσ,k and (a, d) /∈ w.

Otherwise, w is called compatible.

Note that if w contains a subword (a, c) ≺ (b, d) as in condition (1),
then if there is a transposition(a, d) ∈ Wσ,k, we always have (a, d) ≺
(a, c) ≺ (b, d) because of the order on transpositions (see Lemma 4.4).

In Theorem 1.2 as well as in Proposition 4.2, the enumeration is only
given in term of the Bruhat order. Now we state our key proposition
which gives a direct, Bruhat-order free, description of the enumeration.

Proposition 5.3. If w is a subword of Wσ,k, w is compatible if and only
if w is a valid path in the Bruhat order starting at σ, i.e., σw ∈ Eσ,k.

Definition 5.2 and Proposition 5.3 rely on the order on transpositions
of Wσ,k given in Definition 4.1. We use the total order for convenience



PIERI FORMULA FOR GROTHENDIECK POLYNOMIALS 21

and clarity of the proof. But the crucial arguments come from the
partial order defined in Definition 4.3 and a similar description of non
compatible subwords could be given for any other linear extension of
the partial order.

We first prove the following lemma:

Lemma 5.4. Let w = τi1 . . . τir be a subword of Wσ,k which is a valid
path, and τ = (a, b) ∈ Wσ,k, τ � τir . Then,

(64) σw(a) < σw(b)

Proof. Note that σ(a) < σ(b) by definition of τ , and as τ � τir , it has
not yet been applied. Let θ ∈ w be a transposition with w = w′θw′′.
We set σ′ = σw′ and we suppose that

(65) σ′(a) < σ′(b) and σ′θ(a) > σ′θ(b).

If θ = (x, b), as θ ≺ τ , then σ(x) > σ(a). We also have σ′(x) ≥ σ(x)
and σ′(a) = σ(a) (no transposition on a has yet been applied), so
σ′θ(b) = σ′(x) > σ′(a) and (65) cannot be true. So θ = (a, y). We have
θ ≺ τ = (a, b), so by Corollary 4.5, we have y > b. As θ is a Bruhat
transposition for σ′, we have either σ′(b) < σ′(a) or σ′(b) > σ′(y) =
σ′θ(a). Both relations contradict (65) and so such a transposition θ
does not exist. �

Proof of Proposition 5.3. First, let us prove that if w = τi1 . . . τir is a
subword of Wσ,k and is not a valid path, then w is not compatible.
Let w1 be the longest left factor of w which is a valid path. Then
w = w1τw

′
1 with τ = (b, d) not a valid Bruhat transposition for σw1.

By Lemma 5.4, σw1(b) < σw1(d) so there is c such that b < c < d and

(66)

σw1(b) < σw1(c) < σw1(d)

≥ ≤

σ(b) σ(d)

First, let us recall Theorem 2.6 and notice that c > k. Indeed, we
have that τ is a Bruhat transposition for σ so σ(c) < σ(b) or σ(c) >
σ(d). In the first case, we read in (66) that σ(c) < σw1(c) so c ≤ k.
But as σ(c) < σ(b), any transposition (c, ∗) is after τ = (b, d) and
then σw1(c) = σ(c) which is not possible. Therefore, we have that
σ(c) > σ(d) ≥ σw1(d) > σw1(c) which implies c > k.

Let (a, c) be the last transposition acting on position c. We know
that (a, c) exists because σ(c) 6= σw1(c). We have w1 = w2(a, c)w

′
2.

Also, as σ(c) > σ(d) and (a, c) ≺ (b, d), then a 6= b and we have
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(67)

σw2(d) > σw2(a) > σw2(b)

≤ ≥ =

σ(d) σ(a) σ(b)

The vertical relations come from the k-Bruhat order between σ and
σw2 and the horizontal ones from (66). We claim that

σ(c) > σ(d) > σ(a) > σ(b) and(68)

a < b < c < d.(69)

We already have σ(c) > σ(d) and we can read in (67) that σ(d) >
σ(a). Also (a, c) ≺ (b, d) gives σ(a) > σ(b) and so (68) is true. To
prove (69), we only have to show that a < b. It is done by saying that
(b, d) is a Bruhat transposition for σ, then because of (68), we cannot
have b < a < d.

By (68) and (69), we have that (a, c)(b, d) is a subword of w as defined
in Definition 5.2, Condition 1. Now, (a, d) is also a Bruhat transposition
for σ. Indeed, if there is a < x < d such that σ(a) < σ(x) < σ(d),
then either x < c and (a, c) is not a Bruhat transposition, or x > c > b
and (b, d) is not a Bruhat transposition. So (a, d) ∈ Wσ,k and because
σw2(d) > σ(a), then (a, d) /∈ w and Condition 2 of Definition 5.2 is
also satisfied, w is a non compatible subword.

Now, let w be a non compatible subword of Wσ,k from Definition 5.2,
we prove that w is not a valid path. By definition, w contains at least
one subword (a, c)(b, d) satisfying conditions (1) and (2) of Definition
5.2. We chose one where the transposition (a, c) is minimal. We write
w = w1(b, d)w′1, and we prove that if w1 is a valid path, then (b, d) is
not a Bruhat transposition for σw1.

We have that (a, c) ∈ w1, so w1 = w2(a, c)w
′
2. We show that

(70)

σ(b) < σ(a) < σ(d)

= ≤ ≥

σw2(b) < σw2(a) < σw2(d).

The relation σ(b) < σ(a) < σ(d) is immediate as, by definition,
a < b < d and (a, d), (b, d) ∈ Wσ,k which by Lemma 4.4 gives us
(a, d) ≺ (b, d). Relations σ(a) ≤ σw2(a) and σ(d) ≥ σw2(d) come
from the k-Bruhat order. Any transposition acting on b is such that
(b, ∗) � (a, c) so the value in position b has not been changed. There
only remains to prove σw2(a) < σw2(d). Any transposition τ of w2 is
such that τ ≺ (a, d). Indeed, if (a, x) ∈ w with (a, d) ≺ (a, x) ≺ (a, c),
we have by Corollary 4.5 that c < x < d and then (a, x)(b, d) satisfy
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conditions (1) and (2) of Definition 5.2. We have taken (a, c) minimal,
so such a transposition (a, x) does not exist. Now we can apply Lemma
5.4 and we have σw2(a) < σw2(d). If we set σ′ = σw2(a, c), we now
have

(71) b < c < d and σ′(b) < σ′(c) < σ′(d).

We claim that this relation is preserved through w′2. If so, then (b, d)
is not a Bruhat transposition for σw1 and the result is proved. We
show recursively that if w′2 = w3τw

′
3 with σ′ := σw2(a, c)w3 satisfying

(71), then σ′τ still satisfy (71).
We have (a, c) ≺ τ ≺ (b, d). If τ = (b, y), then by Corollary 4.5,

y > d > c. As τ is a Bruhat transposition for σ′ and σ′(c) > σ′(b) then
σ′(c) > σ′(y). If τ = (y, c) or (y, d), then y < a < b and so σ′(b) < σ′(y)
because τ is a Bruhat transposition for σ′ and σ′(b) < σ′(c) < σ′(d).
In any case, σ′τ satisfy (71). �

Lemma 5.1 is a direct consequence of Proposition 5.3.

Proof of Lemma 5.1. Let µ ∈ Eσ,k, µ 6= η(σ, k). We prove that there
exists µ̃ ∈ Eσ,k with µ̃ a direct successor of µ. This is enough to prove
Lemma 5.1 as, if µ̃ 6= η(σ, µ), we can apply the algorithm recursively to
find a direct successor of µ̃ and so on. At each step, the length of the
permutation is increased by one, so the process stops after `(η)− `(µ)
iterations.

For µ = σw with w a subword of Wσ,k and µ 6= η, let us set τ ∈ Wσ,k,
τ /∈ w with τ minimal, i.e, τ is the first transposition of Wσ,k which is
not in w. Then we define w̃ = uτv, where w = uv such that w̃ is still a
subword of Wσ,k (τ is greater than the transpositions of u and smaller
than the transpositions of v). Note that uτ is actually a left factor of
Wσ,k because τ is minimal among the transpositions that are not in w.
We set µ̃ = σw̃.

We prove by Proposition 5.3 that w̃ is a valid path. Let us suppose
that w̃ is a noncompatible subword. Then we have (a, d) ≺ (a, c) ≺
(b, d) all in Wσ,k with (a, d) /∈ w̃ and (a, c), (b, d) ∈ w̃. This is also true
for w. Indeed, w̃ = uτv with uτ a left factor of Wσ,k. Which means
that (a, d) /∈ uτ implies τ ≺ (a, d) ≺ (a, c) ≺ (b, d). The conditions on
(a, d), (a, c) and (b, d) are still satisfied by w = uv which contradicts
the fact that w is a valid path. So w̃ is also a valid path.

Then `(µ̃) = `(σ)+ |w̃| = `(σ)+ |w|+1 = `(µ)+1 and µ̃ = µv−1τv =
µθ where θ is the conjugate of a transposition, i.e., a transposition. So
µ̃ is a direct successor of µ. �
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Here is an example of the algorithm µ → µ̃ described in the proof
applied on µ = 1365|42 for E1362|54 drawn in Fig. 1.

µ = µ0 = (1362|54)(46)(45) = 1365|42

µ1 := µ̃0 = (1362|54)(26)(46)(45) = 1465|32

µ2 := µ̃1 = (1362|54)(26)(25)(46)(45) = 1564|32 = η

Remark 5.5. If Wσ,k contains (a, d)(a, c)(b, d) as a subword, then we
can find noncompatible subwords. We say that Wσ,k contains a conflict
pattern. In particular, this implies that σ contains the permutation
pattern 21|43 as we have σ(b) < σ(a) < σ(d) < σ(c). But the con-
verse implication is not true. As an example, the permutation 213|54
contains the permutation pattern but as (1, 5),(1, 4), and (2, 5) are not
Bruhat transpositions, Wσ,k does not contain the conflict pattern.

Remark 5.6. Proposition 5.3 also gives us information about the size
of the interval. If Wσ,k is of size m and does not contain any conflict
pattern, then |Eσ,k| = 2m. Besides, the number of non compatible sub-
words due to a specific trio (a, d) ≺ (a, c) ≺ (b, d) is 2m−3, so when Wσ,k

contains only one conflict pattern, we have |Eσ| = 2m − 2m−3. As an
example, |E1362|54| = 24− 21 = 14. More generally, we have to perform
an inclusion-exclusion algorithm. If the number of conflict patterns is
high, the inclusion-exclusion algorithm can take much longer to com-
pute than the actual generation of Eσ,k. The permutation 4321|8765
contains 36 conflict patterns and one should compute billions of inter-
sections of conflict patterns whereas the size of Eσ is only 6902. But
the algorithm can be used efficiently on large permutations with few
conflict patterns.

6. Other parabolic subgroups

When we compute Eζ,kπζ−1σ, we apply operators πi where i 6= k, i.e.,
an element of the parabolic subgroup generated by {π1, . . . , πk−1, πk+1,
. . . , πn}. Proposition 4.2 can be generalized to other parabolic sub-
groups.

Definition 6.1. Let σ ∈ Sn and 1 ≤ k1 < k2 < · · · < km < n.
By convention, we set k0 = 0. Then the block βi(σ) for 0 < i ≤
m is the word [σ(ki−1 + 1), σ(ki−1 + 2, . . . , σ(n)] and Wi is the list of
transpositions
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((ki−1 + 1, n), (ki−1 + 1, n− 1), . . . , (ki−1 + 1, ki + 1),

(ki−1 + 2, n), (ki−1 + 2, n− 1), . . . , (ki−1 + 2, ki + 1),

. . . ,

(ki, n), (ki, n− 1), . . . , (ki, ki + 1)).(72)

We define W(k1,...,km) to be the concatenation of the lists Wi for m ≥
i ≥ 1 i.e., W(k1,...,km) := (Wm, . . . ,W1).

As an example, if σ = 43|2|836|57 (k1 = 2, k2 = 3, k3 = 6), then β1 =
43|283657, β2 = 2|83657, β3 = 836|57 and W3 = ((4, 8), (4, 7), (5, 8),
(5, 7), (6, 8), (6, 7)),W2 = ((3, 8), (3, 7), (3, 6), (3, 5), (3, 4)),W1 = ((1, 8),
(1, 7), (1, 6), (1, 5), (1, 4), (1, 3), (2, 8), (2, 7), (2, 6), (2, 5), (2, 4), (2, 3)).

Proposition 6.2. For σ ∈ Sn and 1 ≤ k1 < k2 < · · · < km < n,
let ζ = ζ(σ, k1, . . . , km) be the element of the coset σ(Sk1 × Sk2−k1 ×
Sk3−k2 × · · · ×Sn−km) with maximal length. Then

(73) Kωπ̂ωζπζ−1σ = Eσ,(k1,...,km)

where

(74) Eσ,(k1,...,km) =
∑
w

(−1)|w|Kσw

summing over subwords of the list W(k1,...,km) that correspond to valid
chains of the Bruhat order starting at σ.

Besides, the sum is cancellation free, the coefficients are ±1, and the
summing set is closed by interval.

Note that when m = 1, the enumeration is the one described in
Proposition 4.2, in this case the summing set has a unique maximal
element. This is not true in general when m > 1. As an example,
for σ = 25|14|63, k1 = 2, k2 = 4, one obtain two elements with
maximal length: 362541 = 251463(3, 6)(4, 5)(1, 3)(2, 4) and 461532 =
251463(4, 5)(1, 6)(1, 5)(2, 4).

First, the fact that Eσ,k1,...,km is closed by interval can easily be proved
by a generalization of Proposition 3.2.

Proposition 6.3. Let Succs−(k1,...,km)
σ be the set of successors of σ,

σ′ = στ where τ is not a ki-transposition of σ for 1 ≤ i ≤ m. Then we
have:

(75) Kωπ̂ωζπζ−1σ =
∑

(−1)`(ν)−`(σ)Kν
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summing over permutations ν such that ν ≥ σ and, ∀σ′ ∈ Succs−(k1,...,km)
σ ,

ν � σ′. In particular, the set of permutations of the summation is
closed by interval.

Proof. The proof is completely similar to that of Proposition 3.2. One
just has to see that Lemma 3.4 can be generalized to cosets of the
form σ(Sk1 × Sk2−k1 × Sk3−k2 × · · · × Sn−km). This can be done by
induction as we have σ(Sk1 × Sn−k1) ⊃ σ(Sk1 × Sk2−k1 × Sn−k2) ⊃
· · · ⊃ σ(Sk1 ×Sk2−k1 × · · · ×Sn−km). �

Proof of Proposition 6.2. The proof is done by induction on m. When
m = 1, it corresponds to Proposition 4.2. Now, let ζ ′ be the element of
σ(Sk1 ×Sk2−k1 ×Sk3−k2 × · · · ×Sn−km−1) with maximal length. The
inversions of ζ ′ contain the inversions of ζ and so, ζ ′ ≥ ζ for the right
weak order. This means that any reduced decomposition of ωζ ′ is a
prefix of a reduced decomposition of ωζ and we have:

(76) Kωπ̂ωζπζ−1σ = Kωπ̂ωζ′π̂ζ′−1ζπζ−1σ.

All operators π̂i in π̂ζ′−1ζ are such that i > km−1. Also, there is no
operator πkm−1 in the product πζ−1σ, so operators πi with i < km−1
commute with operators πi with i > km−1 and with operators of π̂ζ′−1ζ

and we can write

(77) Kωπ̂ωζπζ−1σ = (Kωπ̂ωζ′π
(<km−1)

ζ−1σ )(π̂ζ′−1ζπ
(>km−1)

ζ−1σ ).

We have π
(<km−1)

ζ−1σ = πζ′−1σ̃ where σ̃ = [σ(1), σ(2), . . . , σ(km−1), ζ
′(km−1+

1), ζ ′(km−1 + 2), . . . , ζ ′(n)]. The product (π̂ζ′−1ζπ
(>km−1)

ζ−1σ ) only acts on

the block βm(σ), one can use Proposition 4.2 by ignoring the left factor
of size km−1 of σ. We have

(78) Kωπ̂ωζπζ−1σ =
∑
u

(−1)|u|Kωπ̂ωζ′πζ′−1σ̃πσ̃−1σu

summing over subwords u of Wm that are valid chains in the Bruhat
order starting at σ. Now, as πζ′−1σ̃ and πσ̃−1σu contain only operators
πi with respectively i < km−1 and i > km−1, the product is still reduced
and

(79) Kωπ̂ωζπζ−1σ =
∑
u

(−1)|u|Kωπ̂ωζ′πζ′−1σu.

We now obtain (73) by induction.
By Proposition 6.3, we know that the coefficients of the different

permutations are either 1 or −1 depending on the length. This tells us
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that the sum is cancellation free and that each permutation is obtained
in exactly one chain. �

As an example, let us see the computation for σ = 12|463|5, k1 =
2, k2 = 5. We have ζ = 21|643|5 and ζ ′ = 21|6543. The result is
illustrated by Fig. 4.

Kωπ̂ωζπζ−1σ = K654321π̂4π̂3π̂2π̂1π̂5π̂4π̂3π̂2π̂4π̂5 π1π3(80)

= (K654321π̂4π̂3π̂2π̂1π̂5π̂4π̂3π̂2 π1)(π̂4π̂5 π3)(81)

= K̂216543π1(π4π5π3 − π4π3 − π5π3 + π3)(82)

= E12|4635 − E12|4653 − E12|5634 + E12|5643(83)

+K12|463|5

−K12|563|4 −K12|465|3 −K13|4625−K14|2635

+K12|564|3 +K13|5624+K15|2634 +K13|4652+K14|2653 +K14|3625

−K13|5642−K14|5623−K15|2643 −K15|3624 −K14|3652

+K14|5632 +K15|3642 +K15|4623

−K15|4632

Figure 4: The set E12|463|5.
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nales Scientifiques de l’École Normale Supérieure, 4:393–398, 1971.

Laboratoire d’Informatique Gaspard Monge, Université Paris-Est
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