70 research outputs found

    The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress

    Get PDF
    OsWRKY47 is a divergent rice transcription factor belonging to the group II of the WRKY family. A transcriptomic analysis of the drought response of transgenic rice plants expressing PSARK::IPT, validated by qPCR, indicated that OsWRKY47 expression was induced under drought stress in PSARK::IPT plants. A PCR-assisted site selection assay (SELEX) of recombinant OsWRKY47 protein showed that the preferred sequence bound in vitro is (G/T)TTGACT. Bioinformatics analyses identified a number of gene targets of OsWRKY47; among these two genes encode a Calmodulin binding protein and a Cys-rich secretory protein. Using Oswrk47 knockout mutants and transgenic rice overexpressing OsWRKY47 we show that the transcription of these putative targets were regulated by OsWRKY47. Phenotypic analysis carried out with transgenic rice plants showed that Oswrky47 mutants displayed higher sensitivity to drought and reduced yield, while plants overexpressing OsWRKY47 were more tolerant.Fil: Raineri, Jesica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Wang, Songhu. Chinese Academy of Sciences; República de China. University of California at Davis; Estados UnidosFil: Peleg, Zvi. The Hebrew University of Jerusalem; Israel. University of California at Davis; Estados UnidosFil: Blumwald, Eduardo. University of California at Davis; Estados UnidosFil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    Cardiac aquaporin expression in humans, rats, and mice

    No full text
    Water accumulation in the heart is important in ischemia-reperfusion injury and operations performed by using cardiopulmonary bypass, with cardiac dysfunction associated with myocardial edema being the principal determinant of clinical outcome. As an initial step in deter-mining the role of aquaporin (AQP) water channels in myocardial edema, we have assessed the myocardial expression of AQPs in humans, rats, and mice. RT-PCR revealed expression of AQP-1,-4,-6,-7,-8, and-11 transcripts in the mouse heart. AQP-1,-6,-7, and-11 mRNAs were found in the rat heart as well as low levels of AQP-4 and-9. Human hearts contained AQP-1,-3,-4,-5,-7,-9,-10, and-11 mRNAs. AQP-1 protein expression was confirmed by Western blot analysis in all three species. AQP-4 protein was detected in the mouse heart but not in the rat or human heart. To determine the potential functional consequences of myocardial AQP expression, water per-meability was measured in plasma membrane vesicles from myocar-dial cells of wild-type versus various AQP knockout mice. Water permeability was reduced by AQP-1 knockout but not by AQP-4 o

    The family of Peps and their precursors in Arabidopsis : differential expression and localization but similar induction of pattern-triggered immune responses

    No full text
    In Arabidopsis thaliana, the endogenous danger peptides, AtPeps, have been associated with plant defences reminiscent of those induced in pattern-triggered immunity. AtPeps are perceived by two homologous receptor kinases, PEPR1 and PEPR2, and are encoded in the C termini of the PROPEP precursors. Here, we report that, contrary to the seemingly redundant AtPeps, the PROPEPs fall at least into two distinct groups. As revealed by promoter-β-glucuronidase studies, expression patterns of PROPEP1-3, -5, and -8 partially overlapped and correlated with those of the PEPR1 and -2 receptors, whereas those of PROPEP4 and -7 did not share any similarities with the former. Moreover, bi-clustering analysis indicated an association of PROPEP1, -2, and -3 with plant defence, whereas PROPEP5 expression was related to patterns of plant reproduction. In addition, at the protein level, PROPEPs appeared to be distinct. PROPEP3::YFP (fused to yellow fluorescent protein) was present in the cytosol, but, in contrast to previous predictions, PROPEP1::YFP and PROPEP6::YFP localized to the tonoplast. Together with the expression patterns, this could point to potentially non-redundant roles among the members of the PROPEP family. By contrast, their derived AtPeps, including the newly reported AtPep8, when applied exogenously, provoked activation of defence-related responses in a similar manner, suggesting a high level of functional redundancy between the AtPeps. Taken together, our findings reveal an apparent antagonism between AtPep redundancy and PROPEP variability, and indicate new roles for PROPEPs besides plant immunity
    corecore