212 research outputs found

    Solar Neutrinos as Background in Direct Dark Matter Searches

    Full text link
    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current is examined considering the boron solar neutrinos. These neutrinos could potentially become a source of background in the future dark matter searches aiming at nucleon cross sections in the region well below the few events per ton per year.Comment: 6 pages, 5 figures, Submitted for the DSU proceedings to be published by the American institute of Physics (AIP). References adde

    Coherent Neutral Current Neutrino-Nucleus Scattering at a Spallation Source; a Valuable Experimental Probe

    Full text link
    The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current is examined considering the Spallation Neutron Source (SNS) as a source of neutrinos. SNS is a prolific pulsed source of electron and muon neutrinos as well as muon antineutrinos.Comment: 15 LaTex pages, 14 figures, 3 Table

    Cold Dark Matter detection in SUSY models at large tan(beta)

    Get PDF
    We study the direct detection rate for SUSY cold dark matter (CDM) predicted by the minimal supersymmetric standard model with universal boundary conditions and large values for tan(beta). The relic abundance of the lightest supersymmetric particle (LSP), assumed to be approximately a bino, is obtained by including its coannihilations with the next-to-lightest supersymmetric particle (NLSP), which is the lightest s-tau. The cosmological constraint on this quantity severely limits the allowed SUSY parameter space, especially in the case the CP-even Higgs has mass of around 114 GeV. We find that for large tan(beta) it is possible to find a subsection of the allowed parameter space, which yields detectable rates in the currently planned experiments.Comment: Changes in text and figure

    On the keV sterile neutrino search in electron capture

    Full text link
    A joint effort of cryogenic microcalorimetry (CM) and high-precision Penning-trap mass spectrometry (PT-MS) in investigating atomic orbital electron capture (EC) can shed light on the possible existence of heavy sterile neutrinos with masses from 0.5 to 100 keV. Sterile neutrinos are expected to perturb the shape of the atomic de-excitation spectrum measured by CM after a capture of the atomic orbital electrons by a nucleus. This effect should be observable in the ratios of the capture probabilities from different orbits. The sensitivity of the ratio values to the contribution of sterile neutrinos strongly depends on how accurately the mass difference between the parent and the daughter nuclides of EC-transitions can be measured by, e.g., PT-MS. A comparison of such probability ratios in different isotopes of a certain chemical element allows one to exclude many systematic uncertainties and thus could make feasible a determination of the contribution of sterile neutrinos on a level below 1%. Several electron capture transitions suitable for such measurements are discussed.Comment: 16 pages, 9 figures, 2 table

    Ultra low energy results and their impact to dark matter and low energy neutrino physics

    Full text link
    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure

    Neutrinoless Double Beta Decay in Gauge Theories

    Full text link
    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. Its observation will severely constrain the existing models and signal that the neutrinos are massive Majorana particles. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the neutrino mass, the admixture of right handed currents etc, it may occur due to the R-parity violating supersymmetric (SUSY) interactions. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about 100 MeV. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25 per cent, almost regardless of the nuclear model. In the case of heavy neutrinos the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 and the experimental limits on the life times we have extracted new stringent limits on the average neutrino mass and on the R-parity violating coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
    corecore