74 research outputs found

    Phonologische Dekodierung bei Leseanfängern, erwachsenen schwachen Lesern und erwachsenen durchschnittlichen Lesern

    Get PDF
    Die phonologische Rekodierung ist eine Teilfertigkeit, die für das Lesen von besonderer Bedeutung ist. Hinweise auf Schwierigkeiten beim phonologischen Rekodieren zeigen sich einerseits bei Aussprechlatenz von zu lesenden Wörtern und durch die Anzahl der Lesefehler. Die Schwierigkeiten beim Lesen von Pseudowörtern sind wesentlich größer als beim Ganzwortlesen und bleiben im Erwachsenenalter erhalten, was besonders beim Lesen von mehrsilbigen Wörtern deutlich wird, da diese weniger automatisiert sind. Die Stichprobe dieser Untersuchung setzte sich aus 121 Personen zusammen; davon waren 68 Schüler, 26 sehr schwache bis schwache und 27 durchschnittliche Leser. Vorgegeben wurden unterschiedliche Instrumente: Salzburger Lese-Screening 1-4 (SLS), Lesetest für Erwachsene (LT), Fragebogen über das Leseverhalten Erwachsener (FLE) und Aufgaben zur Phonologischen Dekodierung (APD). Die Mittelwerte der erreichten Sätze im SLS steigen kontinuierlich von den Kindern über die schwachen bis hin zu den durchschnittlichen Lesern. Außerdem brauchen Kinder beim Lesen von dreisilbigen Wörtern signifikant mehr Zeit als Erwachsene. Bei durchschnittlichen bzw. sehr schwachen bis schwachen erwachsenen Lesern gibt es nur eine leichte Tendenz, die nicht signifikant ausfällt. Sehr schwache bis schwache Leser machen signifikant mehr Fehler als durchschnittliche Leser beim Lesen aller Pseudowörter und auch signifikant mehr Fehler als Leseanfänger beim Lesen einsilbiger Wörter. Außerdem korrigieren diese sich in Bezug auf einsilbige Wörter auch signifikant häufiger als durchschnittliche Leser. Insgesamt liegen erwachsene schwache Leser in ihrem Level der phonologischen Dekodierung zwischen Kindern, die schnell lesen, und solchen, die langsamer lesen

    Amp(1q) and tetraploidy are commonly acquired chromosomal abnormalities in relapsed multiple myeloma.

    Get PDF
    Long-term disease control in multiple myeloma (MM) is typically an unmet medical need, and most patients experience multiple relapses. Fluorescence in situ hybridization (FISH) is the standard technique to detect chromosomal abnormalities (CAs), which are important to estimate the prognosis of MM and the allocation of risk adapted therapies. In advanced stages, the importance of CAs needs further investigation. From 148 MM patients, two or more paired samples, at least one of which was collected at relapse, were analyzed by FISH. Using targeted next-generation sequencing, we molecularly investigated samples harboring relapse-associated CAs. Sixty-one percent of the patients showed a change in the cytogenetic profile during the disease course, including 10% who acquired high-risk cytogenetics. Amp(1q) (≥4 copies of 1q21), driven by an additional increase in copy number in patients who already had 3 copies of 1q21, was the most common acquired CA with 16% affected patients. Tetraploidy, found in 10% of the samples collected at the last time-point, was unstable over the course of the disease and was associated with TP53 lesions. Our results indicate that cytogenetic progression is common in relapsed patients. The relatively high frequency of amp(1q) suggests an active role for this CA in disease progression

    Genomic insights into the conservation status of the world’s last remaining Sumatran rhinoceros populations

    Get PDF
    Highly endangered species like the Sumatran rhinoceros are at risk from inbreeding. Five historical and 16 modern genomes from across the species range show mutational load, but little evidence for local adaptation, suggesting that future inbreeding depression could be mitigated by assisted gene flow among populations. Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations

    Inhibition of lysyl oxidases synergizes with 5-azacytidine to restore erythropoiesis in myelodysplastic and myeloid malignancies

    Get PDF
    Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN

    The multimodal Munich Clinical Deep Phenotyping study to bridge the translational gap in severe mental illness treatment research

    Get PDF
    Introduction: Treatment of severe mental illness (SMI) symptoms, especially negative symptoms and cognitive dysfunction in schizophrenia, remains a major unmet need. There is good evidence that SMIs have a strong genetic background and are characterized by multiple biological alterations, including disturbed brain circuits and connectivity, dysregulated neuronal excitation-inhibition, disturbed dopaminergic and glutamatergic pathways, and partially dysregulated inflammatory processes. The ways in which the dysregulated signaling pathways are interconnected remains largely unknown, in part because well-characterized clinical studies on comprehensive biomaterial are lacking. Furthermore, the development of drugs to treat SMIs such as schizophrenia is limited by the use of operationalized symptom-based clusters for diagnosis. Methods: In line with the Research Domain Criteria initiative, the Clinical Deep Phenotyping (CDP) study is using a multimodal approach to reveal the neurobiological underpinnings of clinically relevant schizophrenia subgroups by performing broad transdiagnostic clinical characterization with standardized neurocognitive assessments, multimodal neuroimaging, electrophysiological assessments, retinal investigations, and omics-based analyzes of blood and cerebrospinal fluid. Moreover, to bridge the translational gap in biological psychiatry the study includes in vitro investigations on human-induced pluripotent stem cells, which are available from a subset of participants. Results: Here, we report on the feasibility of this multimodal approach, which has been successfully initiated in the first participants in the CDP cohort; to date, the cohort comprises over 194 individuals with SMI and 187 age and gender matched healthy controls. In addition, we describe the applied research modalities and study objectives. Discussion: The identification of cross-diagnostic and diagnosis-specific biotype-informed subgroups of patients and the translational dissection of those subgroups may help to pave the way toward precision medicine with artificial intelligence-supported tailored interventions and treatment. This aim is particularly important in psychiatry, a field where innovation is urgently needed because specific symptom domains, such as negative symptoms and cognitive dysfunction, and treatment-resistant symptoms in general are still difficult to treat

    Adoptive transfer of allergen-expressing B cells prevents IgE-mediated allergy

    Get PDF
    IntroductionProphylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) to induce allergen-specific tolerance in naive mice and identified CD19+ B cells as promising candidates for allergen-specific cell therapy.MethodsFor this purpose, CD19+ B cells were isolated from Phl p 5-transgenic BALB/c mice and transferred to naive BALB/c mice, pre-treated with a short course of rapamycin and an anti-CD40L antibody. Subsequently, the mice were subcutaneously sensitized three times at 4-week intervals to Phl p 5 and Bet v 1 as an unrelated control allergen. Allergen-expressing cells were followed in the blood to monitor molecular chimerism, and sera were analyzed for Phl p 5- and Bet v 1-specific IgE and IgG1 levels by RBL assay and ELISA, respectively. In vivo allergen-induced lung inflammation was measured by whole-body plethysmography, and mast cell degranulation was determined by skin testing.ResultsThe transfer of purified Phl p 5-expressing CD19+ B cells to naive BALB/c mice induced B cell chimerism for up to three months and prevented the development of Phl p 5-specific IgE and IgG1 antibody responses for a follow-up period of 26 weeks. Since Bet v 1 but not Phl p 5-specific antibodies were detected, the induction of tolerance was specific for Phl p 5. Whole-body plethysmography revealed preserved lung function in CD19+ B cell-treated mice in contrast to sensitized mice, and there was no Phl p 5-induced mast cell degranulation in treated mice.DiscussionThus, we demonstrated that the transfer of Phl p 5-expressing CD19+ B cells induces allergen-specific tolerance in a mouse model of grass pollen allergy. This approach could be further translated into a prophylactic regimen for the prevention of IgE-mediated allergy in humans

    Evaluating a Targeted Cancer Therapy Approach Mediated by RNA

    Get PDF
    Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy
    corecore