2 research outputs found

    Cell Typeā€“Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex

    Get PDF
    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2ā€“6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90ā€“580 boutons per neuron); 2) pyramidal neurons in L3ā€“L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2ā€“4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types

    QDPR homologues in Danio rerio regulate melanin synthesis, early gliogenesis, and glutamine homeostasis.

    No full text
    Dihydropteridine reductase (QDPR) catalyzes the recycling of tetrahydrobiopterin (BH4), a cofactor in dopamine, serotonin, and phenylalanine metabolism. QDPR-deficient patients develop neurological symptoms including hypokinesia, truncal hypotonia, intellectual disability and seizures. The underlying pathomechanisms are poorly understood. We established a zebrafish model for QDPR deficiency and analyzed the expression as well as function of all zebrafish QDPR homologues during embryonic development. The homologues qdpra is essential for pigmentation and phenylalanine metabolism. Qdprb1 is expressed in the proliferative zones of the optic tectum and eye. Knockdown of qdprb1 leads to up-regulation of pro-proliferative genes and increased number of phospho-histone3 positive mitotic cells. Expression of neuronal and astroglial marker genes is concomitantly decreased. Qdprb1 hypomorphic embryos develop microcephaly and reduced eye size indicating a role for qdprb1 in the transition from cell proliferation to differentiation. Glutamine accumulation biochemically accompanies the developmental changes. Our findings provide novel insights into the neuropathogenesis of QDPR deficiency
    corecore