6,071 research outputs found

    Cyber-physical manufacturing systems: An architecture for sensor integration, production line simulation and cloud services

    Get PDF
    none9noThe pillars of Industry 4.0 require the integration of a modern smart factory, data storage in the Cloud, access to the Cloud for data analytics, and information sharing at the software level for simulation and hardware-in-the-loop (HIL) capabilities. The resulting cyber-physical system (CPS) is often termed the cyber-physical manufacturing system, and it has become crucial to cope with this increased system complexity and to attain the desired performances. However, since a great number of old production systems are based on monolithic architectures with limited external communication ports and reduced local computational capabilities, it is difficult to ensure such production lines are compliant with the Industry 4.0 pillars. A wireless sensor network is one solution for the smart connection of a production line to a CPS elaborating data through cloud computing. The scope of this research work lies in developing a modular software architecture based on the open service gateway initiative framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis and enable both HIL and cloud computing capabilities. The CPS architecture was initially tested using HIL tools before it was deployed within a real manufacturing line for data collection and analysis over a period of two months.openPrist Mariorosario; Monteriu' Andrea; Pallotta Emanuele; Cicconi Paolo; Freddi Alessandro; Giuggioloni Federico; Caizer Eduard; Verdini Carlo; Longhi SauroPrist, Mariorosario; Monteriu', Andrea; Pallotta, Emanuele; Cicconi, Paolo; Freddi, Alessandro; Giuggioloni, Federico; Caizer, Eduard; Verdini, Carlo; Longhi, Saur

    Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)

    Full text link
    The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.Comment: 4 pages, 3 figure

    Ferrous to Ferric Transition in Fe-Phthalocyanine Driven by NO2 Exposure

    Get PDF
    Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature

    On-surface synthesis of metal–organic frameworks: the critical role of the reaction conditions

    Get PDF
    Two different metal–organic frameworks with either a honeycomb or Kagome structure were grown on Cu(111) using para-aminophenol molecules and native surface adatoms. Although both frameworks are made up from the same chemical species, they are structurally different emphasizing the critical role being played by the reaction conditions during their growth. This work highlights the importance of the balance between thermodynamics and kinetics in the final structure of surface-supported metal–organic networks

    From bi-layer to tri-layer Fe nanoislands on Cu3Au(001)

    Full text link
    Self assembly on suitably chosen substrates is a well exploited root to control the structure and morphology, hence magnetization, of metal films. In particular, the Cu3Au(001) surface has been recently singled out as a good template to grow high spin Fe phases, due to the close matching between the Cu3Au lattice constant (3.75 Angstrom) and the equilibrium lattice constant for fcc ferromagnetic Fe (3.65 Angstrom). Growth proceeds almost layer by layer at room temperature, with a small amount of Au segregation in the early stage of deposition. Islands of 1-2 nm lateral size and double layer height are formed when 1 monolayer of Fe is deposited on Cu3Au(001) at low temperature. We used the PhotoElectron Diffraction technique to investigate the atomic structure and chemical composition of these nanoislands just after the deposition at 140 K and after annealing at 400 K. We show that only bi-layer islands are formed at low temperature, without any surface segregation. After annealing, the Fe atoms are re-aggregated to form mainly tri-layer islands. Surface segregation is shown to be inhibited also after the annealing process. The implications for the film magnetic properties and the growth model are discussed.Comment: Revtex, 5 pages with 4 eps figure

    Distinct behaviour of localized and delocalized carriers in anatase TiO2 (001) during reaction with O2

    Get PDF
    Two-dimensional (2D) metallic states induced by oxygen vacancies (VOs) at oxide surfaces and interfaces provide opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used angle resolved photoelectron spectroscopy combined with density-functional theory (DFT) to study the reactivity of VO-induced states at the (001) surface of anatase TiO2, where both 2D metallic and deeper lying in-gap states (IGs) are observed. The 2D and IG states exhibit remarkably different evolutions when the surface is exposed to molecular O2: while IGs are almost completely quenched, the metallic states are only weakly affected. DFT calculations indeed show that the IGs originate from surface VOs and remain localized at the surface, where they can promptly react with O2. In contrast, the metallic states originate from subsurface vacancies whose migration to the surface for recombination with O2 is kinetically hindered on anatase TiO2 (001), thus making them much less sensitive to oxygen dosing.PostprintPeer reviewe

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVbh^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure
    corecore