167 research outputs found

    The Behavioral and Cognitive Executive Disorders of Stroke: The GREFEX Study.

    Get PDF
    BACKGROUND: Many studies have highlighted the high prevalence of executive disorders in stroke. However, major uncertainties remain due to use of variable and non-validated methods. The objectives of this study were: 1) to characterize the executive disorder profile in stroke using a standardized battery, validated diagnosis criteria of executive disorders and validated framework for the interpretation of neuropsychological data and 2) examine the sensitivity of the harmonization standards protocol proposed by the National Institute of Neurological Disorders and Stroke and Canadian Stroke Network (NINDS-CSN) for the diagnosis of Vascular Cognitive Impairment. METHODS: 237 patients (infarct: 57; cerebral hemorrhage: 54; ruptured aneurysm of the anterior communicating artery (ACoA): 80; cerebral venous thrombosis (CVT): 46) were examined by using the GREFEX battery. The patients' test results were interpreted with a validated framework derived from normative data from 780 controls. RESULTS: Dysexecutive syndrome was observed in 88 (55.7%; 95%CI: 48-63.4) out of the 156 patients with full cognitive and behavioral data: 40 (45.5%) had combined behavioral and cognitive syndromes, 29 (33%) had a behavioral disorder alone and 19 (21.6%) had a cognitive syndrome alone. The dysexecutive profile was characterized by prominent impairments of initiation and generation in the cognitive domain and by hypoactivity with disinterest and anticipation loss in the behavioral domain. Cognitive impairment was more frequent (p = 0.014) in hemorrhage and behavioral disorders were more frequent (p = 0.004) in infarct and hemorrhage. The harmonization standards protocol underestimated (p = 0.007) executive disorders in CVT or ACoA. CONCLUSIONS: This profile of executive disorders implies that the assessment should include both cognitive tests and a validated inventory for behavioral dysexecutive syndrome. Initial assessment may be performed with a short cognitive battery, such as the harmonization standards protocol. However, administration of a full cognitive battery is required in selected patients

    A phenotype of atypical apraxia of speech in a family carrying SQSTM1 mutation.

    Get PDF
    SQSTM1 mutations, coding for the p62 protein, were identified as a monogenic cause of Paget disease of bone and of amyotrophic lateral sclerosis. More recently, SQSTM1 mutations were identified in few families with frontotemporal dementia. We report a new family carrying SQSTM1 mutation and presenting with a clinical phenotype of speech apraxia or atypical behavioral disorders, associated with early visuo-contructional deficits. This study further supports the implication of SQSTM1 in frontotemporal dementia, and enlarges the phenotypic spectrum associated with SQSTM1 mutations

    Démences : où sont les corps de Lewy ?

    Get PDF
    La démence à corps de Lewy (DCL) est la deuxième cause de démence dégénérative du sujet âgé, dans les grandes séries autopsiques. Dans la réalité quotidienne des centres mémoire pourtant, la DCL représente une faible proportion des diagnostics cliniques, avec une forte disparité entre les centres. Plusieurs raisons peuvent rendre compte de la faible sensibilité du diagnostic de DCL : l’imprécision et la subjectivité des critères diagnostiques existants ; la place insuffisante donnée à certains signes non-moteurs (troubles du comportement en sommeil paradoxal, dysautonomie) ; enfin et surtout l’association quasi constante de la pathologie de Lewy à une pathologie de type Alzheimer, qui domine rapidement le phénotype clinique. À l’heure de l’essor des thérapies ciblées contre les agrégats protéiques, de nouvelles échelles cliniques permettant d’appréhender la coexistence de la pathologie de Lewy dans la maladie d’Alzheimer sont plus que jamais nécessaires

    Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers

    Get PDF
    A (GGGGCC) n repeat expansion in C9orf72 gene is the major cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The relations between the repeats size and the age at disease onset (AO) or the clinical phenotype (FTD vs. ALS) were investigated in 125 FTD, ALS, and presymptomatic carriers. Positive correlations were found between repeats number and the AO (p < 10 e−4 ) but our results suggested that the association was mainly driven by age at collection (p < 10 e−4 ). A weaker association was observed with clinical presentation (p = 0.02), which became nonsignificant after adjustment for the age at collection in each group. Importantly, repeats number variably expanded or contracted over time in carriers with multiple blood samples, as well as through generations in parent-offspring pairs, conversely to what occurs in several expansion diseases with anticipation at the molecular level. Finally, this study establishes that measure of repeats number in lymphocytes is not a reliable biomarker predictive of the AO or disease outcome in C9orf72 long expansion carriers

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with Amyotrophic Lateral Sclerosis by DNA-methylation and GWAS

    Get PDF

    Protein network analysis reveals selectively vulnerable regions and biological processes in FTD

    Get PDF
    corecore