22 research outputs found

    The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-β1 and integrin-β3

    Get PDF
    This study was designed to examine the influence of integrin subunit-β1 and subunit-β3 on the behavior of primary osteoblast-like cells, cultured on calcium phosphate (CaP)-coated and non coated titanium (Ti). Osteoblast-like cells were incubated with specific monoclonal antibodies against integrin-β1 and integrin-β3 to block the integrin function. Subsequently, cells were seeded on Ti discs, either non coated or provided with a 2 μm carbonated hydroxyapatite coating using Electrostatic Spray Deposition. Results showed that on CaP coatings, cellular attachment was decreased after a pre-treatment with either anti-integrin-β1 or anti-integrin-β3 antibodies. On Ti, cell adhesion was only slightly affected after a pre-treatment with anti-integrin-β3 antibodies. Scanning electron microscopy showed that on both types of substrate, cellular morphology was not changed after a pre-treatment with either antibody. With quantitative PCR, it was shown for both substrates that mRNA expression of integrin-β1 was increased after a pre-treatment with either anti-integrin-β1 or anti-integrin-β3 antibodies. Furthermore, after a pre-treatment with either antibody, mRNA expression of integrin-β3 and ALP was decreased, on both types of substrate. In conclusion, osteoblast-like cells have the ability to compensate to great extent for the blocking strategy as applied here. Still, integrin-β1 and β3 seem to play different roles in attachment, proliferation, and differentiation of osteoblast-like cells, and responses on CaP-coated substrates differ to non coated Ti. Furthermore, the influence on ALP expression suggests involvement of both integrin subunits in signal transduction for cellular differentiation

    Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    Get PDF
    Background: Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology: Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 mm, BAF-500), in the implant vicinity (100 mm, BAF-100) and further away (100–500 mm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings: After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p.0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-mm compared to the 400-mm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions: BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn’t stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn’t stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.status: publishe
    corecore