382 research outputs found

    Вплив структури фонових знань перекладача на інтерпретацію міфологічних алюзій

    Get PDF
    L.M.Chernovaty, T.K.Varenko. An impact of the interpreters’ background knowledge structure upon their interpretation of mythological allusions. Basing upon an experimental research into the ways English sentences containing mythology-related allusions are interpreted into Ukrainian, the author argues for the necessity to include the corresponding elements into the subject-matter of the interpreter-training course to provide for the acquisition of background knowledge in mythology and folklore related to the cultures contacting in the process of interpreting. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/1128

    Plasticity of thermal performance curves in a narrow range endemic water beetle

    Get PDF
    Data supporting the article Plasticity of thermal performance curves in a narrow range endemic water beetle. Results from the experiments measuring locomotion performance and metabolic rate in the aquatic beetle Enocrhus jesusarribasi (fam. Hydrophilidae)

    Does plasticity in thermal tolerance trade off with inherent tolerance? The influence of setal tracheal gills on thermal tolerance and its plasticity in a group of European diving beetles.

    Get PDF
    In the face of global warming, both the absolute thermal tolerance of an ectotherms, and its ability to shift its tolerance level via acclimation, are thought to be fundamentally important. Understanding the links between tolerance and its plasticity is therefore critical to accurately predict vulnerability to warming. Previous studies in a number of ectotherm taxa suggest trade-offs in the evolution of thermal tolerance and its plasticity, something which does not, however, apply to Deronectes diving beetles, where these traits are instead positively correlated. Here we revisit the relationship between thermal tolerance and plasticity in these beetles, paying attention to a recently discovered morphological adaptation supporting under water respiration - setal tracheal gills. Hollow setae on the elytra interconnect with the beetle's tracheal system, providing a gas exchange surface that allows oxygen to be extracted directly from the water. This enables individuals to stay submerged for longer than their subelytral air stores would allow. We show that hypoxia reduced heat tolerance, especially when individuals were denied access to air, forcing them to rely solely on aquatic gas exchange. Species with higher densities of these gas-exchanging setae exhibited improved cold tolerance, but reduced heat tolerance and lower plasticity of heat tolerance. Differences in setal tracheal gill density across species were also related to habitat use: species with low gill density were found mainly in intermittent, warmer rivers, where underwater gas exchange is more problematic and risks of surfacing may be smaller. Moreover, when controlling for differences in gill density we no longer found a significant relationship between heat tolerance and its plasticity, suggesting that the previously reported positive relationship between these variables may be driven by differences in gill density. Differences in environmental conditions between the preferred habitats could simultaneously select for characteristic differences in both thermal tolerance and gill density. Such simultaneous selection may have resulted in a non-causal association between cold tolerance and gill density. For heat tolerance, the correlations with gill density could reflect a causal relationship. Species relying strongly on diffusive oxygen uptake via setal tracheal gills may have a reduced oxygen supply capacity and may be left with fewer options for matching oxygen uptake to oxygen demand during acclimation, which could explain their reduced heat tolerance and limited plasticity. Our study helps shed light on the mechanisms that underpin thermal tolerance and plasticity in diving air-breathing ectotherms, and explores how differences in thermal tolerance across species are linked to their selected habitat, morphological adaptations and evolutionary history

    Deciphering Protein Secretion from the Brain to Cerebrospinal Fluid for Biomarker Discovery

    Get PDF
    Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection

    Interpreting and acting upon home blood pressure readings: A qualitative study

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 Vasileiou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Recent guidelines recognize the importance of home blood pressure monitoring (HBPM) as an adjunct to clinical measurements. We explored how people who have purchased and use a home blood pressure (BP) monitor make sense of, and act upon, readings and how they communicate with their doctor about the practice of home monitoring. Methods: A qualitative study was designed and participants were purposively recruited from several areas in England, UK. Semi-structured in-depth interviews were conducted with 18 users of home BP monitors. The transcribed data were thematically analysed. Results: Interpretation of home BP readings is complex, and is often characterised by uncertainty. People seek to assess value normality using ‘rules of thumb’, and often aim to identify the potential causes of the readings. This is done by drawing on lay models of BP function and by contextualising the readings to personal circumstances. Based on the perceived causes of the problematic readings, actions are initiated, mostly relating to changes in daily routines. Contacting the doctor was more likely when the problematic readings persisted and could not be easily explained, or when participants did not succeed in regulating their BP through their other interventions. Most users had notified their doctor of the practice of home monitoring, but medical involvement varied, with some participants reporting disinterest or reservations by doctors. Conclusions: Involvement from doctors can help people overcome difficulties and resolve uncertainties around the interpretation of home readings, and ensure that the rules of thumb are appropriate. Home monitoring can be used to strengthen the patient-clinician relationship

    Perspectieven voor hoogveenherstel in Nederland : samenvatting onderzoek en handleiding hoogveenherstel 1998-2010

    Get PDF
    Het hoogveenareaal in Nederland is door ontginning, turfwinning, boekweitbrandcultuur en verdroging sterk gereduceerd. De water- en nutriëntenhuishouding van de hoogvenen zijn sterk verstoord door deze aantastingen en bovendien door de neerslag van atmosferisch stikstof (N). Verder is door deze aantastingen de variatie in terreincondities die aanwezig is in intacte hoogveenlandschappen, met name gradiënten van de zure, mineraalarme hoogveenkern naar de gebufferde, mineraalrijkere omgeving, afgenomen. Herstelmaatregelen in de hoogveenrestanten hadden wisselend succes: soms herstelden of ontwikkelden zich vegetaties met bultvormende veenmossen, meestal ontstond een drijvende laag Waterveenmos (Sphagnum cuspidatum) of een zure waterplas. Verder bleef Pijpenstrootje (Molinia caerulea) over grote oppervlakten de vegetatie domineren en vestigden zich Berken (Betula spec.). In het kader van het kennisnetwerk ‘Ontwikkeling en Beheer Natuurkwaliteit’ (OBN) is onderzoek gedaan naar de perspectieven voor hoogveenherstel in Nederland. Twee vragen stonden daarbij centraal: 1. Is hoogveenherstel mogelijk bij de huidige hoge atmosferische N-depositie? 2. Onder welke voorwaarden is succesvol herstel van de karakteristieke flora en fauna mogelijk? De belangrijkste conclusies uit dit onderzoek worden in dit rapport beschreven

    Urinary biomarker concentrations of captan, chlormequat, chlorpyrifos and cypermethrin in UK adults and children living near agricultural land

    Get PDF
    There is limited information on the exposure to pesticides experienced by UK residents living near agricultural land. This study aimed to investigate their pesticide exposure in relation to spray events. Farmers treating crops with captan, chlormequat, chlorpyrifos or cypermethrin provided spray event information. Adults and children residing ≤100 m from sprayed fields provided first-morning void urine samples during and outwith the spray season. Selected samples (1–2 days after a spray event and at other times (background samples)) were analysed and creatinine adjusted. Generalised Linear Mixed Models were used to investigate if urinary biomarkers of these pesticides were elevated after spray events. The final data set for statistical analysis contained 1518 urine samples from 140 participants, consisting of 523 spray event and 995 background samples which were analysed for pesticide urinary biomarkers. For captan and cypermethrin, the proportion of values below the limit of detection was greater than 80%, with no difference between spray event and background samples. For chlormequat and chlorpyrifos, the geometric mean urinary biomarker concentrations following spray events were 15.4 μg/g creatinine and 2.5 μg/g creatinine, respectively, compared with 16.5 μg/g creatinine and 3.0 μg/g creatinine for background samples within the spraying season. Outwith the spraying season, concentrations for chlorpyrifos were the same as those within spraying season backgrounds, but for chlormequat, lower concentrations were observed outwith the spraying season (12.3 μg/g creatinine). Overall, we observed no evidence indicative of additional urinary pesticide biomarker excretion as a result of spray events, suggesting that sources other than local spraying are responsible for the relatively low urinary pesticide biomarkers detected in the study population

    Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy

    Get PDF
    Results of experiments are presented that suggest that the Si vacancy in SiC is a promising quantum system for single-defect and single-photon spectroscopy in the infrared region. The investigation was carried out with electron paramagnetic resonance (EPR), zero-field optically detected magnetic resonance (ODMR), direct-detection EPR (DD-EPR), and high-resolution fluorescence-excitation spectroscopy. Depending on the temperature, crystal polytype, and crystal position, two opposite schemes have been observed for the optical alignment of the populations of the spin sublevels of the high-spin ground state of the Si vacancy in SiC upon irradiation with unpolarized light at the zero-phonon lines (ZPLs). A giant change has been found in the luminescence intensity of the ZPLs in zero magnetic field upon the application of resonant microwaves which induce transitions between the spin sublevels of the vacancy ground state thus opening the possibility for magnetic-resonance detection of a single vacancy. The optical alignment of the populations of the spin sublevels in the ground state of the Si vacancy was shown with DD-EPR. Surprisingly narrow ZPLs of Si vacancies with a width less than 0.05 meV have been observed which seem to be the narrowest detected so far in SiC. © 2011 American Physical Society

    Deciphering protein secretion from the brain to Cerebrospinal Fluid for biomarker discovery

    Get PDF
    Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection

    Characterization of pre-analytical sample handling effects on a panel of Alzheimer's disease–related blood-based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group

    Get PDF
    Introduction: Pre-analytical sample handling might affect the results of Alzheimer's disease blood-based biomarkers. We empirically tested variations of common blood collection and handling procedures. Methods: We created sample sets that address the effect of blood collection tube type, and of ethylene diamine tetraacetic acid plasma delayed centrifugation, centrifugation temperature, aliquot volume, delayed storage, and freeze–thawing. We measured amyloid beta (Aβ)42 and 40 peptides with six assays, and Aβ oligomerization-tendency (OAβ), amyloid precursor protein (APP)699-711, glial fibrillary acidic protein (GFAP), neurofilament light (NfL), total tau (t-tau), and phosphorylated tau181. Results: Collection tube type resulted in different values of all assessed markers. Delayed plasma centrifugation and storage affected Aβ and t-tau; t-tau was additionally affected by centrifugation temperature. The other markers were resistant to handling variations. Discussion: We constructed a standardized operating procedure for plasma handling, to facilitate introduction of blood-based biomarkers into the research and clinical settings
    corecore