49 research outputs found

    Evaluation of climate change scenarios based on aquatic food web modelling

    Get PDF
    In the years 2004 and 2005 we collected samples of phytoplankton, zooplankton and macroinvertebrates in an artificial small pond in Budapest. We set up a simulation model predicting the abundance of the cyclopoids, Eudiaptomus zachariasi and Ischnura pumilio by considering only temperature as it affects the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature, but the abundance of the three mentioned groups. This discrete-deterministic model could generate similar patterns like the observed one and testing it on historical data was successful. However, because the model was overpredicting the abundances of Ischnura pumilio and Cyclopoida at the end of the year, these results were not considered. Running the model with the data series of climate change scenarios, we had an opportunity to predict the individual numbers for the period around 2050. If the model is run with the data series of the two scenarios UKHI and UKLO, which predict drastic global warming, then we can observe a decrease in abundance and shift in the date of the maximum abundance occurring (excluding Ischnura pumilio, where the maximum abundance increases and it occurs later), whereas under unchanged climatic conditions (BASE scenario) the change in abundance is negligible. According to the scenarios GFDL 2535, GFDL 5564 and UKTR, a transition could be noticed

    Microencapsulation Analysis Based on Membrane Technology: Basic Research of Spherical, Solid Precursor Microcapsule Production

    Get PDF
    The objective of the proposed investigation was to synthesis of precursor oil-carbohydrate microcapsule, suspended in water by membrane emulsification technology. To select the carrier material of precursor microcapsules, four different carbohydrates (maltodextrin, hydroxypropyl cellulose, potato starch and corn starch) were tested. Preliminary, zeta-potential, molecular weight and particle size of individual carbohydrate were estimated by Malvern Zetasizer instrument. Based on the results of the preliminary characterizations, maltodextrin was selected to carry out subsequent experiments. Maltodextrin suspended in oil and water were considered as dispersed phase and continuous phase respectively. An attempt has been made to remove the water, as well as to recover the microcapsules. It was observed that average particle size of synthesized microcapsule is 6.9 μm and stability of the microcapsule is at least 6 weeks

    Inter-individual stereotypy of the Platynereis larval visual connectome

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Developmental programs have the fidelity to form neural circuits with the same structure and function among individuals of the same species. It is less well understood, however, to what extent entire neural circuits of different individuals are similar. Previously, we reported the neuronal connectome of the visual eye circuit from the head of a Platynereis dumerilii larva (Randel et al., 2014). We now report a full-body serial section transmission electron microscopy (ssTEM) dataset of another larva of the same age, for which we describe the connectome of the visual eyes and the larval eyespots. Anatomical comparisons and quantitative analyses of the two circuits reveal a high inter-individual stereotypy of the cell complement, neuronal projections, and synaptic connectivity, including the left-right asymmetry in the connectivity of some neurons. Our work shows the extent to which the eye circuitry in Platynereis larvae is hard-wired.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/European Research Council Grant Agreement 260821.European Research Council (ERC): Grant Agreement 260821, Gaspar Jekel

    Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821. This project is supported by the Marie Curie ITN ‘Neptune’, GA 317172, funded under the FP7, PEOPLE Work Programme of the European Commission. This project is supported by the DFG - Deutsche Forschungsgemeinschaft (Reference no. JE 777/3–1).Deutsche Forschungsgemeinschaft 777/3-1 Gaspar JekelyMax-Planck-Gesellschaft Open-access funding Gaspar JekelyEuropean Commission GA 317172 Gaspar Jekel

    Neuronal connectome of a sensory-motor circuit for visual navigation.

    Get PDF
    This is the final version of the article. Available from eLife Sciences Publications via the DOI in this record.Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task.The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821

    A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes.

    Get PDF
    This is the final version of the article.Available from eLife Sciences Publications via the DOI in this record.Electron microscopy-based connectomics aims to comprehensively map synaptic connections in neural tissue. However, current approaches are limited in their capacity to directly assign molecular identities to neurons. Here, we use serial multiplex immunogold labeling (siGOLD) and serial-section transmission electron microscopy (ssTEM) to identify multiple peptidergic neurons in a connectome. The high immunogenicity of neuropeptides and their broad distribution along axons, allowed us to identify distinct neurons by immunolabeling small subsets of sections within larger series. We demonstrate the scalability of siGOLD by using 11 neuropeptide antibodies on a full-body larval ssTEM dataset of the annelid Platynereis. We also reconstruct a peptidergic circuitry comprising the sensory nuchal organs, found by siGOLD to express pigment-dispersing factor, a circadian neuropeptide. Our approach enables the direct overlaying of chemical neuromodulatory maps onto synaptic connectomic maps in the study of nervous systems.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council Grant Agreement 260821. This project is supported by the Marie Curie ITN "Neptune", GA 317172, funded under the FP7, PEOPLE Work Programme of the European Commission

    Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis

    Get PDF
    SummaryPhototaxis is characteristic of the pelagic larval stage of most bottom-dwelling marine invertebrates [1]. Larval phototaxis is mediated by simple eyes that can express various types of light-sensitive G-protein-coupled receptors known as opsins [2–8]. Since opsins diversified early during metazoan evolution in the marine environment [9], understanding underwater light detection could elucidate this diversification. Opsins have been classified into three major families, the r-opsins, the c-opsins, and the Go/RGR opsins, a family uniting Go-opsins, retinochromes, RGR opsins, and neuropsins [10, 11]. The Go-opsins form an ancient and poorly characterized group retained only in marine invertebrate genomes. Here, we characterize a Go-opsin from the marine annelid Platynereis dumerilii [3–5, 12–15]. We found Go-opsin1 coexpressed with two r-opsins in depolarizing rhabdomeric photoreceptor cells in the pigmented eyes of Platynereis larvae. We purified recombinant Go-opsin1 and found that it absorbs in the blue-cyan range of the light spectrum. To characterize the function of Go-opsin1, we generated a Go-opsin1 knockout Platynereis line by zinc-finger-nuclease-mediated genome engineering. Go-opsin1 knockout larvae were phototactic but showed reduced efficiency of phototaxis to wavelengths matching the in vitro Go-opsin1 spectrum. Our results highlight spectral tuning of phototaxis as a potential mechanism contributing to opsin diversity

    Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton.

    Get PDF
    This is the final version.Available from eLife Publications via the DOI in this record.All data generated or analysed during this study are included in the manuscript and supporting files.Source data files have been provided for Figures 1, 3 and 4 and Figure 2-figure supplement 2.Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva.The research was supported by a grant from the DFG - Deutsche Forschungsgemeinschaft (Reference no. JE 777/3–1). SY was supported by the National Institutes of Health (R01EY016400) and Emory University. KTR is supported by grants from the University of Vienna (research platform “Rhythms of Life”), the FWF (http://www.fwf.ac.at/en/) research project grant (#P28970), and the European Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement 337011

    Synaptic and peptidergic connectome of a neurosecretory centre in the annelid brain

    Get PDF
    This is the author accepted manuscript. The final version is available from eLife Sciences Publications via the DOI in this record.Neurosecretory centers in animal brains use peptidergic signaling to influence physiology and behavior. Understanding neurosecretory center function requires mapping cell types, synapses, and peptidergic networks. Here we use transmission electron microscopy and gene expression mapping to analyze the synaptic and peptidergic connectome of an entire neurosecretory center. We reconstructed 78 neurosecretory neurons and mapped their synaptic connectivity in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory center expressing many neuropeptides, including hypothalamic peptide orthologs and their receptors. Analysis of peptide-receptor pairs in spatially mapped single-cell transcriptome data revealed sparsely connected networks linking specific neuronal subsets. We experimentally analyzed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signaling. Our study uncovered extensive networks of peptidergic signaling within a neurosecretory center and its connection to the synaptic brain.The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ European Research Council Grant Agreement 260821. The research was supported by a grant from the DFG - Deutsche Forschungsgemeinschaft (Reference no. JE 777/1)

    Comparative Assessment of Climate Change Scenarios Based on Aquatic Food Web Modeling

    Get PDF
    In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods
    corecore