81 research outputs found

    Fatal adenoviral necrotizing bronchiolitis case in a post-cardiac surgery intensive care unit

    Get PDF
    We report a case of a 67 year-old-male patient admitted to the intensive care unit in the post-coronary bypass surgery period who presented cardiogenic shock, acute renal failure and three episodes of sepsis, the latter with pulmonary distress at the 30th post-operative day. The patient expired within five days in spite of treatment with vancomycin, imipenem, colistimethate and amphotericin B. At autopsy severe adenovirus pneumonia was found. Viral pulmonary infections following cardiovascular surgery are uncommon. We highlight the importance of etiological diagnosis to a correct treatment approach

    The independence of the infundibular building blocks in the setting of double-outlet right ventricle.

    Get PDF
    It has long been contentious as to whether the presence of bilateral infundibulums, or conuses, is a prerequisite for the diagnosis of double-outlet right ventricle. As the use of such a criterion would abrogate the so-called "morphological method", which correctly states that one variable entity should not be defined on the basis of another entity that is itself variable, it is now accepted that double outlet can exist in the setting of fibrous continuity between the leaflets of the atrioventricular and arterial valves. Although this debate has now been resolved, there are other contentious areas still requiring clarification in the setting of hearts unified because of the presence of this particular ventriculo-arterial connection - for example, it is questionable whether the channel between the ventricles should be described as a "ventricular septal defect", whereas it is equally arguable that the mere presence of fibrous continuity between the leaflets of the arterial valves does not necessarily place the channel in a doubly committed location. In this review, we describe a series of autopsied hearts in which the anatomical features serve to illuminate these various topics. We then discuss recent findings regarding cardiac development that point to the individuality of the building blocks of the ventricular outflow tracts, specifically the outlet septum, the inner heart curvature, or ventriculo-infundibular fold, and the septomarginal trabeculation, or septal band

    The nomenclature, definition and classification of discordant atrioventricular connections

    Get PDF
    Congenitally corrected transposition is a complex cardiac lesion that is often associated with ventricular septal defect, obstruction of the outflow tract of the morphologically left ventricle, and abnormalities of the morphologically tricuspid valve.1,2Nomenclature for this lesion has been variable and confusing.1In this review, we define, and hopefully clarify this terminology. The lesion is a combination of discordant union of the atrial chambers with the ventricles, and the ventricles with the arterial trunks.1,2In rare circumstances, discordant atrioventricular connections can be associated with concordant ventriculo-arterial connections. This malformation has been called "isolated ventricular inversion". The term is less than precise, and the descriptive approach using the phrase "discordant atrioventricular connections with concordant ventriculo-arterial connections" is preferred, as discussed below

    The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy

    Get PDF
    AbstractIn 2000, The International Nomenclature Committee for Pediatric and Congenital Heart Disease was established. This committee eventually evolved into the International Society for Nomenclature of Paediatric and Congenital Heart Disease. The working component of this international nomenclature society has been The International Working Group for Mapping and Coding of Nomenclatures for Paediatric and Congenital Heart Disease, also known as the Nomenclature Working Group. The Nomenclature Working Group created the International Paediatric and Congenital Cardiac Code, which is available for free download from the internet at [http://www.IPCCC.NET].In previous publications from the Nomenclature Working Group, unity has been produced by cross-mapping separate systems for coding, as for example in the treatment of the functionally univentricular heart, hypoplastic left heart syndrome, or congenitally corrected transposition. In this manuscript, we review the nomenclature, definition, and classification of heterotaxy, also known as the heterotaxy syndrome, placing special emphasis on the philosophical approach taken by both the Bostonian school of segmental notation developed from the teachings of Van Praagh, and the European school of sequential segmental analysis. The Nomenclature Working Group offers the following definition for the term "heterotaxy": "Heterotaxy is synonymous with 'visceral heterotaxy' and 'heterotaxy syndrome'. Heterotaxy is defined as an abnormality where the internal thoraco-abdominal organs demonstrate abnormal arrangement across the left-right axis of the body. By convention, heterotaxy does not include patients with either the expected usual or normal arrangement of the internal organs along the left-right axis, also known as 'situs solitus', nor patients with complete mirror-imaged arrangement of the internal organs along the left-right axis also known as 'situs inversus'." "Situs ambiguus is defined as an abnormality in which there are components of situs solitus and situs inversus in the same person. Situs ambiguus, therefore, can be considered to be present when the thoracic and abdominal organs are positioned in such a way with respect to each other as to be not clearly lateralised and thus have neither the usual, or normal, nor the mirror-imaged arrangements."The heterotaxy syndrome as thus defined is typically associated with complex cardiovascular malformations. Proper description of the heart in patients with this syndrome requires complete description of both the cardiac relations and the junctional connections of the cardiac segments, with documentation of the arrangement of the atrial appendages, the ventricular topology, the nature of the unions of the segments across the atrioventricular and the ventriculoarterial junctions, the infundibular morphologies, and the relationships of the arterial trunks in space. The position of the heart in the chest, and the orientation of the cardiac apex, must also be described separately. Particular attention is required for the venoatrial connections, since these are so often abnormal. The malformations within the heart are then analysed and described separately as for any patient with suspected congenital cardiac disease. The relationship and arrangement of the remaining thoraco-abdominal organs, including the spleen, the lungs, and the intestines, also must be described separately, because, although common patterns of association have been identified, there are frequent exceptions to these common patterns. One of the clinically important implications of heterotaxy syndrome is that splenic abnormalities are common. Investigation of any patient with the cardiac findings associated with heterotaxy, therefore, should include analysis of splenic morphology. The less than perfect association between the state of the spleen and the form of heart disease implies that splenic morphology should be investigated in all forms of heterotaxy, regardless of the type of cardiac disease. The splenic morphology should not be used to stratify the form of disease within the heart, and the form of cardiac disease should not be used to stratify the state of the spleen. Intestinal malrotation is another frequently associated lesion that must be considered. Some advocate that all patients with heterotaxy, especially those with isomerism of the right atrial appendages or asplenia syndrome, should have a barium study to evaluate for intestinal malrotation, given the associated potential morbidity. The cardiac anatomy and associated cardiac malformations, as well as the relationship and arrangement of the remaining thoraco-abdominal organs, must be described separately. It is only by utilizing this stepwise and logical progression of analysis that it becomes possible to describe correctly, and to classify properly, patients with heterotaxy

    Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis

    Get PDF
    BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF
    Background and purpose: Prospectively collected data comparing the safety and effectiveness of individual non-vitamin K antagonists (NOACs) are lacking. Our objective was to directly compare the effectiveness and safety of NOACs in patients with newly diagnosed atrial fibrillation (AF). Methods: In GLORIA-AF, a large, prospective, global registry program, consecutive patients with newly diagnosed AF were followed for 3 years. The comparative analyses for (1) dabigatran vs rivaroxaban or apixaban and (2) rivaroxaban vs apixaban were performed on propensity score (PS)-matched patient sets. Proportional hazards regression was used to estimate hazard ratios (HRs) for outcomes of interest. Results: The GLORIA-AF Phase III registry enrolled 21,300 patients between January 2014 and December 2016. Of these, 3839 were prescribed dabigatran, 4015 rivaroxaban and 4505 apixaban, with median ages of 71.0, 71.0, and 73.0 years, respectively. In the PS-matched set, the adjusted HRs and 95% confidence intervals (CIs) for dabigatran vs rivaroxaban were, for stroke: 1.27 (0.79–2.03), major bleeding 0.59 (0.40–0.88), myocardial infarction 0.68 (0.40–1.16), and all-cause death 0.86 (0.67–1.10). For the comparison of dabigatran vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 1.16 (0.76–1.78), myocardial infarction 0.84 (0.48–1.46), major bleeding 0.98 (0.63–1.52) and all-cause death 1.01 (0.79–1.29). For the comparison of rivaroxaban vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 0.78 (0.52–1.19), myocardial infarction 0.96 (0.63–1.45), major bleeding 1.54 (1.14–2.08), and all-cause death 0.97 (0.80–1.19). Conclusions: Patients treated with dabigatran had a 41% lower risk of major bleeding compared with rivaroxaban, but similar risks of stroke, MI, and death. Relative to apixaban, patients treated with dabigatran had similar risks of stroke, major bleeding, MI, and death. Rivaroxaban relative to apixaban had increased risk for major bleeding, but similar risks for stroke, MI, and death. Registration: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01468701, NCT01671007. Date of registration: September 2013
    • …
    corecore