348 research outputs found

    Corn Response to Nitrogen Management under Fully-Irrigated vs. Water-Stressed Conditions

    Get PDF
    Characterizing corn (Zea mays L.) grain yield (GY) response to N is critical for maximizing profits, increasing N use efficiency and minimizing environmental impacts. Although a large database of GY response to N exists for highly productive soils, few data exist for less productive soils. While changes in precipitation are expected in the future, few studies have compared GY response to varying N management practices under conditions of varying water availability. We measured GY and basal stalk nitrate nitrogen (BSN) at harvest using split-applied urea at eight N rates under fully-irrigated (FI) and water-stressed (WS) conditions in a loamy sand over 2 yr (2009 and 2010). We also measured GY and BSN using single, pre-plant applications of urea, polymer-coated urea (PCU) and urea amended with urease and nitrification inhibitors (IU) at one or two N rates. The results showed that economic optimum nitrogen rate (EONR) and agronomic optimum nitrogen rate (AONR) did not vary by water management, in spite of significant increases in GY (up to 48%) under FI compared to WS. Modification of N fertilizer timing or N source was effective for increasing GY (by 18–41%) with FI, but did not affect GY under WS conditions. Averaged across years, BSN was greater with WS compared to FI at most N rates; however, BSN corresponding to AONR was within the optimal range for both water regimes. These findings may have important implications in areas where changes in irrigation practices or water availability are expected under future climate conditions

    Global Research Alliance N2 O chamber methodology guidelines:Introduction, with health and safety considerations

    Get PDF
    Non-steady-state (NSS) chamber techniques have been used for decades to measure nitrous oxide (N₂O) fluxes from agricultural soils. These techniques are widely used because they are relatively inexpensive, easy to adopt, versatile, and adaptable to varying conditions. Much of our current understanding of the drivers of N₂O emissions is based on studies using NSS chambers. These chamber techniques require decisions regarding multiple methodological aspects (e.g., chamber materials and geometry, deployment, sample analysis, and data and statistical analysis), each of which may significantly affect the results. Variation in methodological details can lead to challenges in comparing results between studies and assessment of reliability and uncertainty. Therefore, the New Zealand Government, in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA), funded two international projects to, first, develop standardized guidelines on the use of NSS chamber techniques and, second, refine them based on the most up to date knowledge and methods. This introductory paper summarizes a collection of papers that represent the revised guidelines. Each article summarizes existing knowledge and provides guidance and minimum requirements on chamber design, deployment, sample collection, storage and analysis, automated chambers, flux calculations, statistical analysis, emission factor estimation and data reporting, modeling, and “gap-filling” approaches. The minimum requirements are not meant to be highly prescriptive but instead provide researchers with clear direction on best practices and factors that need to be considered. Health and safety considerations of NSS chamber techniques are also provided with this introductory paper

    Denitrifying Bacteria Active in Woodchip Bioreactors at Low-Temperature Conditions

    Get PDF
    Woodchip bioreactor technology removes nitrate from agricultural subsurface drainage by using denitrifying microorganisms. Although woodchip bioreactors have demonstrated success in many field locations, low water temperature can significantly limit bioreactor efficiency and performance. To improve bioreactor performance, it is important to identify the microbes responsible for nitrate removal at low temperature conditions. Therefore, in this study, we identified and characterized denitrifiers active at low-temperature conditions by using culture-independent and -dependent approaches. By comparative 16S rRNA (gene) analysis and culture isolation technique, Pseudomonas spp., Polaromonas spp., and Cellulomonas spp. were identified as being important bacteria responsible for denitrification in woodchip bioreactor microcosms at relatively low temperature conditions (15°C). Genome analysis of Cellulomonas sp. strain WB94 confirmed the presence of nitrite reductase gene nirK. Transcription levels of this nirK were significantly higher in the denitrifying microcosms than in the non-denitrifying microcosms. Strain WB94 was also capable of degrading cellulose and other complex polysaccharides. Taken together, our results suggest that Cellulomonas sp. denitrifiers could degrade woodchips to provide carbon source and electron donors to themselves and other denitrifiers in woodchip bioreactors at low-temperature conditions. By inoculating these denitrifiers (i.e., bioaugmentation), it might be possible to increase the nitrate removal rate of woodchip bioreactors at low-temperature conditions

    Perennial forages for sustainable soil nitrogen cycling in East Africa

    Get PDF

    Data analysis considerations

    Get PDF

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    The Atacama Cosmology Telescope: Millimeter Observations of a Population of Asteroids or: ACTeroids

    Full text link
    We present fluxes and light curves for a population of asteroids at millimeter (mm) wavelengths, detected by the Atacama Cosmology Telescope (ACT) over 18, 000 deg2 of the sky using data from 2017 to 2021. We utilize high cadence maps, which can be used in searching for moving objects such as asteroids and trans-Neptunian Objects (TNOs), as well as for studying transients. We detect 160 asteroids with a signal-to-noise of at least 5 in at least one of the ACT observing bands, which are centered near 90, 150, and 220 GHz. For each asteroid, we compare the ACT measured flux to predicted fluxes from the Near Earth Asteroid Thermal Model (NEATM) fit to WISE data. We confirm previous results that detected a deficit of flux at millimeter wavelengths. Moreover, we report a spectral characteristic to this deficit, such that the flux is relatively lower at 150 and 220 GHz than at 90 GHz. Additionally, we find that the deficit in flux is greater for S-type asteroids than for C-type.Comment: 15 pages, 9 Figures, 4 Table

    Global Research Alliance N2O chamber methodology guidelines: considerations for automated flux measurement

    Get PDF
    Nitrous oxide (N2O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2O chamber systems
    • …
    corecore