24 research outputs found

    Logros y retos en la participación política de las mujeres en los gobiernos locales de El Salvador

    Get PDF
    Este documento parte de una hipótesis que plantea que, a pesar de algunos avances políticos y legales por promover la participación política femenina en El Salvador, existen aún ciertos patrones económico, sociales y culturales que ejercen una fuerza de relegación de las mujeres de la esfera política local. En este contexto, dos son los objetivos que han dirigido la investigación que se presenta. El primero de ellos, sistematizar y ordenar la información existente acerca de las mujeres que actualmente ejercen el poder local en los diferentes municipios. El segundo, identificar cuáles son las principales barreras que impiden el acceso de las mujeres en la esfera política, y por otro lado identificar los factores que favorecen el ejercicio de poder femenino a nivel local.Revista Ciencia, Cultura y Sociedad Vol.2 No.1 enero-junio 2015; 9-1

    Spitzer and Herschel Multiwavelength Characterization of the Dust Content of Evolved H II Regions

    Get PDF
    We have analyzed a uniform sample of 16 evolved H II regions located in a 2° × 2° Galactic field centered at (l,b) = (30°, 0°) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these H II regions was established using ancillary radio-continuum data. By combining Hi-GAL PACS (70 μm, 160 μm) and SPIRE (250 μm, 350 μm, and 500 μm) measurements with MIPSGAL 24 μm data, we built spectral energy distributions of the sources and showed that a two-component gray-body model is a good representation of the data. In particular, wavelengths >70 μm appear to trace a cold dust component, for which we estimated an equilibrium temperature of the big grains (BGs) in the range 20-30 K, while for λ < 70 μm, the data indicate the presence of a warm dust component at temperatures of the order of 50-90 K. This analysis also revealed that dust is present in the interior of H II regions, although likely not in a large amount. In addition, the data seem to corroborate the hypothesis that the main mechanism responsible for the (partial) depletion of dust in H II regions is radiation-pressure-driven drift. In this framework, we speculated that the 24 μm emission that spatially correlates with ionized gas might be associated with either very small grain or BG replenishment, as recently proposed for the case of wind-blown bubbles. Finally, we found that evolved H II regions are characterized by distinctive far-IR and submillimeter colors, which can be used as diagnostics for their identification in unresolved Galactic and extragalactic regions

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Data quality of Aeolus wind measurements

    Get PDF
    The European Space Agency (ESA)'s Earth Explorer Aeolus was launched in August 2018 carrying the world's first spaceborne wind lidar, the Atmospheric Laser Doppler Instrument (ALADIN). ALADIN uses a high spectral resolution Doppler wind lidar operating at 355nm to determine profiles of line-of-sight wind components in near-real-time (NRT). ALADIN samples the atmosphere from 30km altitude down to the Earth's surface or to the level where the lidar signal is attenuated by optically thick clouds. The global wind profiles provided by ALADIN help to improve weather forecasting and the understanding of atmospheric dynamics as they fill observational gaps in vertically resolved wind profiles mainly in the tropics, southern hemisphere, and over the northern hemisphere oceans. Since 2020, multiple national and international weather centres (e.g. ECMWF, DWD, Météo France, MetOffice) assimilate Aeolus observations in their operational forecasting. Additionally, the scientific exploitation of the Aeolus dataset has started. A main prerequisite for beneficial impact and scientific exploitation is data of sufficient quality. Such high data quality has been achieved through close collaboration of all involved parties within the Aeolus Data Innovation and Science Cluster (DISC), which was established after launch to study and improve the data quality of Aeolus products. The tasks of the Aeolus DISC include the instrument and platform monitoring, calibration, characterization, retrieval algorithm refinement, processor evolution, quality monitoring, product validation, and impact assessment for NWP. The achievements of the Aeolus DISC for the NRT data quality and the one currently available reprocessed dataset will be presented. The data quality of the Aeolus wind measurements will be described and an outlook on planned improvements of the dataset and processors will be provided

    The Aeolus Data Innovation and Science Cluster

    Get PDF
    The Data Innovation and Science Cluster (DISC) is a core element of ESA's data quality strategy for the Aeolus mission, which was launched in August 2018. Aeolus provides for the first-time global observations of vertical profiles of horizontal wind information by using the first Doppler wind lidar in space. The Aeolus DISC is responsible for monitoring and improving the quality of the Aeolus aerosol and wind products, for the upgrade of the operational processors as well as for impact studies and support of data usage. It has been responsible for multiple significant processor upgrades which reduced the systematic error of the Aeolus observations drastically. Only due to the efforts of the Aeolus DISC team members prior to and after launch, the systematic error of the Aeolus wind products could be reduced to a global average below 1 m/s which was an important pre-requisite for making the data available to the public in May 2020 and for its use in operational weather prediction. In 2020, the reprocessing of earlier acquired Aeolus data, another important task of the Aeolus DISC, also started. In this way, also observations from June to December 2019 with significantly better quality could be made available to the public, and more data will follow this and next year. Without the thorough preparations and close collaboration between ESA and the Aeolus DISC over the past decade, many of these achievements would not have been possible

    Contributions from the DISC to accomplish the Aeolus mission objectives

    Get PDF
    The Aeolus Data Innovation and Science Cluster (DISC) supports the Aeolus mission with a wide range of activities from instrument and product quality monitoring over retrieval algorithm improvements to numerical weather prediction (NWP) impact assessments for wind and aerosols. The Aeolus DISC provides support to ESA, Cal/Val teams, numerical weather prediction (NWP) centers, and scientific users for instrument special operations and calibration, for the re-processing of Aeolus products from the past and through the provision of bi-annual updates of the L1A, L1B, L2A and L2B operational processors. The Aeolus DISC is coordinated by DLR with partners from ECMWF, KNMI, Météo-France, TROPOS, DoRIT, ABB, s&t, serco, OLA, Physics Solutions, IB Reissig and Les Myriades involving more than 40 scientists and engineers. The presentation will highlight the Aeolus DISC activities with a focus for the year 2021 and early 2022 since the last Aeolus workshop in November 2020. This covers the evolution of the instrument performance including investigations of the cause of the on-going signal loss and the achieved improvement via dedicated laser tests in 2021. In addition, refinements of algorithms and correction of the wind bias will be discussed - including a known remaining seasonal bias in October and March as encountered during the re-processing campaigns. Finally, the strategy for the on-going and future re-processing campaigns will be addressed to inform the scientific community about the availability and quality of the re-processed data products. The Aeolus mission has fully achieved its mission objectives including the unprecedented demonstration of direct-detection Doppler wind lidar technology and high-power laser operation in space in the ultraviolet spectral region over its planned full mission lifetime of 3 years and 3 months. Aeolus wind products have clearly demonstrated positive impact on forecasts using several NWP models. Since early 2020, and thus only 1.5 years after launch, the Aeolus wind products are used in operation at various NWP centers worldwide. This was achieved even despite the larger than expected wind random errors due to lower initial atmospheric signal levels and the observed signal losses during the operation of the first and second laser. In addition to this incredible success, first scientific studies demonstrated the use of Aeolus for atmospheric dynamics research in the stratosphere and for the analysis of aerosol transport. These achievements of the Aeolus mission and its success were only possible with the essential and critical contributions from the Aeolus DISC. This demonstrates the need and potential for setting up such scientific consortia covering a wide range of expertise from instrument, processors, and scientific use of products for Earth Explorer type missions. The invaluable experience gained by the Aeolus DISC during the more then 3 years of Aeolus mission in orbit (preceded by a period of 20 years before launch by a similar study team) is a pre-requisite for a successful preparation of an operational follow-on Aeolus-2 mission

    Género y conflictos ambientales en la región Trifinio

    Get PDF
    El presente estudio parte de la hipótesis que los conflictos ambientales son conflictos primariamente políticos de desigual distribución de poder, particularmente entre los sexos. En este contexto, tres son los objetivos que han dirigido la investigación que se presenta. El primero es conocer los principales problemas y conflictos ambientales y de manejo del agua entre hombres y mujeres en el área en consideración. El segundo es analizar el impacto de la conflictividad ambiental en las mujeres de la Región Trifinio. El tercer objetivo es generar información que contribuya a la incorporación del enfoque de género en la gestión y manejo de los recursos ambientales. La metodología implicó revisión documental y trabajo de campo con grupos focales, así como entrevistas en profundidad y encuestas cuantitativas

    Analyse à hautes fréquences de BOOMEranG 2003 et étalonnage de Planck-HFI

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Estimating Interstellar Medium Dust Temperature And Spectral Index In The Far-infrared And Submillimeter

    No full text
    Dust temperature and spectral index are evidenced to be anti-correlated from observations in the far-infrared and millimeter wavelengths and from laboratory experiments. However, uncertainties in flux measurements combined with calibration errors and other source of systematic errors, affect the results of the spectral energy distribution (SED) fit. An inverse correlation between dust temperature and spectral index naturally arises from the spectral model assumed for the fit combined with data noise and systematic uncertainties. When the spectral coverage do not sample the whole SED but only a limited range of it, it is even more difficult to get reliable results on dust physical properties. We developed a method to fit the inverse relationship between the temperature and spectral index with Bayesian statistics taking properly into account both the statistics and the systematic errors. We simulate observations of one-component Interstellar Medium (15 K < T < 25 K), and of two-components sources both warm (HII regions) and cold (cold cores) in the Herschel PACS and SPIRE spectral bands (70-500 um). We also include some ancillary simulated data from Planck-HFI, IRAS and MIPS to better sample the SEDs

    Delivery D5.2 Report on stakeholders and industry challenges

    No full text
    Report describing the stakeholders and industry challenges used during the project
    corecore