689 research outputs found

    Subband population in a single-wall carbon nanotube diode

    Full text link
    We observe current rectification in a molecular diode consisting of a semiconducting single-wall carbon nanotube and an impurity. One half of the nanotube has no impurity, and it has a current-voltage (I-V) charcteristic of a typical semiconducting nanotube. The other half of the nanotube has the impurity on it, and its I-V characteristic is that of a diode. Current in the nanotube diode is carried by holes transported through the molecule's one-dimensional subbands. At 77 Kelvin we observe a step-wise increase in the current through the diode as a function of gate voltage, showing that we can control the number of occupied one-dimensional subbands through electrostatic doping.Comment: to appear in Physical Review Letters. 4 pages & 3 figure

    Nieuwsgierigheid in kaart gebracht:Validatiestudie van de Epistemic Curiosity Scale in de Nederlandse onderwijscontext

    Get PDF
    De doelstelling van het onderzoek is de validering van een vertaald meetinstrument om nieuwsgierigheid van leerlingen en studenten in Nederland in kaart te kunnen brengen. De centrale onderzoeksvraag luidt: In hoeverre geeft de vertaalde, Nederlandstalige versie van de Epistemic Curiosity Scale (Litman, 2008) een betrouwbaar en valide beeld van de mate van nieuwsgierigheid van leerlingen in het voortgezet onderwijs en studenten in het mbo en hbo? De vragenlijst onderscheidt twee componenten van nieuwsgierigheid: gevoelens van deprivatie (D-type nieuwsgierigheid) en gevoelens van interesse (I-type nieuwsgierigheid). De vragenlijst is afgenomen bij 131 leerlingen in het voortgezet onderwijs, 188 mbo-studenten en 282 hbo-studenten. Uit de resultaten komt eenduidig naar voren dat het vertaalde meetinstrument de mate van nieuwsgierigheid van leerlingen en studenten goed in kaart kan brengen. De I-type en D-type schalen zijn betrouwbaar en geven een redelijk valide beeld van de mate van nieuwsgierigheid van leerlingen in het voortgezet onderwijs en studenten in het mbo en hbo. Wel bleek dat de model fit nog verder geoptimaliseerd kan worden door de formulering van enkele items te verbeteren

    Finitely generated free Heyting algebras via Birkhoff duality and coalgebra

    Get PDF
    Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods

    Andreev-Tunneling, Coulomb Blockade, and Resonant Transport of Non-Local Spin-Entangled Electrons

    Full text link
    We propose and analyze a spin-entangler for electrons based on an s-wave superconductor coupled to two quantum dots each of which is tunnel-coupled to normal Fermi leads. We show that in the presence of a voltage bias and in the Coulomb blockade regime two correlated electrons provided by the Andreev process can coherently tunnel from the superconductor via different dots into different leads. The spin-singlet coming from the Cooper pair remains preserved in this process, and the setup provides a source of mobile and nonlocal spin-entangled electrons. The transport current is calculated and shown to be dominated by a two-particle Breit-Wigner resonance which allows the injection of two spin-entangled electrons into different leads at exactly the same orbital energy, which is a crucial requirement for the detection of spin entanglement via noise measurements. The coherent tunneling of both electrons into the same lead is suppressed by the on-site Coulomb repulsion and/or the superconducting gap, while the tunneling into different leads is suppressed through the initial separation of the tunneling electrons. In the regime of interest the particle-hole excitations of the leads are shown to be negligible. The Aharonov-Bohm oscillations in the current are shown to contain single- and two-electron periods with amplitudes that both vanish with increasing Coulomb repulsion albeit differently fast.Comment: 11 double-column pages, 2 figures, REVTeX, minor revision

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity

    Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle

    Full text link
    It is shown that the gravitational ultrarelativistic spin-orbit interaction violates the weak equivalence principle in the traditional sense. This fact is a direct consequence of the Mathisson-Papapetrou equations in the frame of reference comoving with a spinning test particle. The widely held assumption that the deviation of a spinning test body from a geodesic trajectory is caused by tidal forces is not correctComment: 12 page

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range −1.73≤η≤1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 A⋅A\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.
    • …
    corecore