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Finitely generated free Heyting algebras
via Birkhoff duality and coalgebra

N. Bezhanishvili1⋆ M. Gehrke2⋆⋆

1 Department of Computing, Imperial College London, United Kingdom
2 IMAPP, Radbout Universiteit Nijmegen, the Netherlands

Abstract. Algebras axiomatized entirely by rank 1 axioms are algebrasfor a
functor and thus the free algebras can be obtained by a directlimit process. Du-
ally, the final coalgebras can be obtained by an inverse limitprocess. In order to
explore the limits of this method we look at Heyting algebraswhich have mixed
rank 0-1 axiomatizations. We will see that Heyting algebrasare special in that
they are almost rank 1 axiomatized and can be handled by a slight variant of the
rank 1 coalgebraic methods.

1 Introduction

Coalgebraic methods and techniques are becoming increasingly important in investigat-
ing non-classical logics [24]. In particular, logics axiomatized by rank 1 axioms allow
coalgebraic representation as coalgebras for a functor [17, 23]. We recall that an equa-
tion is of rank 1 for an operationf if each variable occurring in the equation is under the
scope of exactly one occurrence off . As a result the algebras for these logics become
algebras for a functor over the category of underlying algebras without the operationf .
Consequently, free algebras are initial algebras in the category of algebras for this func-
tor. This correspondence immediately gives a constructivedescription of free algebras
for rank 1 logics [13, 1, 7]. Examples of rank 1 logics are the basic modal logicK , basic
positive modal logic, graded modal logic, probabilistic modal logic, coalition logic and
so on [23]. For a coalgebraic approach to the complexity of rank 1 logics we refer to
[23]. On the other hand, rank 1 axioms are too simple—very fewwell-known logics
are axiomatized by rank 1 axioms. Therefore, one would want to extend the existing
coalgebraic techniques to non-rank 1 logics. However, as follows from [18], algebras
for these logics cannot be represented as algebras for a functor and we cannot use the
standard construction of free algebras in a straightforward way.

This paper is an extended version of [6]. However, unlike [6], here we give a complete
solution to the problem of describing finitely generated free Heyting algebras in a sys-
tematic way using methods similar to those used for rank 1 logics. This paper together
with [6] and [7] is a facet of a larger joint project with Alexander Kurz on coalgebraic
treatment of modal logics beyond rank 1. We recall that an equation is of rank 0-1 for
an operationf if each variable occurring in the equation is under the scopeof at most
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one occurrence off . With the ultimate goal of generalizing a method of constructing
free algebras for varieties axiomatized by rank 1 axioms to the case of rank 0-1 axioms,
we consider the case of Heyting algebras (intuitionistic logic, which is of rank 0-1 for
f =→). In particular, we construct free Heyting algebras. For anextension of coalge-
braic techniques to deal with the finite model property of non-rank 1 logics we refer to
[22].

Free Heyting algebras have been the subject of intensive investigation for decades. The
one-generated free Heyting algebra was constructed by Rieger and Nishimura in the
50s. In the 70s Urquhart gave an algebraic characterizationof finitely generated free
Heyting algebras. A very detailed description of finitely generated free Heyting alge-
bras in terms of their dual spaces was obtained in the 80s by Grigolia, Shehtman, Bel-
lissima and Rybakov. This method is based on a description ofthe points of finite depth
of the dual frame of the free Heyting algebra. For the detailsof this construction we re-
fer to [11, Section 8.7] and [5, Section 3.2] and the references therein. Finally, Ghilardi
[12] introduced a different method for describing free Heyting algebras. His technique
builds the free Heyting algebra on a distributive lattice step by step by freely adding
to the original lattice the implications of degreen, for eachn ∈ ω. Ghilardi [12] used
this technique to show that every finitely generated free Heyting algebra is a bi-Heyting
algebra. A more detailed account of Ghilardi’s construction can be found in [9] and
[14]. Ghilardi and Zawadowski [14], based on this method, derive a model-theoretic
proof of Pitts’ uniform interpolation theorem. In [3] a similar construction is used to
describe free linear Heyting algebras over a finite distributive lattice and [21] uses the
same method to construct high order cylindric Heyting algebras.

Our contribution is to derive Ghilardi’s representation offinitely generated free Heyting
algebras in a simple, transparent, and modular way which is based entirely on the ideas
of the coalgebraic approach to rank 1 logics, though it uses these ideas in a non-standard
way. We split the process into two parts. We first apply the initial algebra construction to
weak and pre Heyting algebras—these are consecutive rank 1 approximants of Heyting
algebras. We then use a non-standard colimit system based onthe sequence of algebras
for building free pre-Heyting algebras in the standard coalgebraic framework.

On the negative side, we use some properties particular to Heyting algebras, and thus
our work does not yield a method that applies in general. Nevertheless, we expect that
the approach, though it would have to be tailored, is likely to be successful in other
instances as well. Obtained results allow us to derive a coalgebraic representation for
weak and pre Heyting algebras and sheds new light on the very special nature of Heyt-
ing algebras.

The paper is organized as follows. In Section 2 we recall the so-called Birkhoff (dis-
crete) duality for distributive lattices. We use this duality in Section 3 to build free weak
Heyting algebras and in Section 4 to build free pre-Heyting algebras. Obtained results
are applied in Section 5 for describing free Heyting algebras. In Section 6 we give a
coalgebraic representation for weak and pre-Heyting algebras. We conclude the paper
by listing some future work.



2 Discrete duality for distributive lattices

We recall that a non-zero elementa of a distributive latticeD is calledjoin-irreducible
if for everyb, c ∈ D we have thata ≤ b∨c impliesa ≤ b or a ≤ c. For each distributive
lattice (DL for short)D let J(D) denote the set of all join-irreducible elements ofD.
Let also≤ be the restriction of the order ofD to J(D). Then(J(D),≤) is a poset.
Recall also that for every posetX a subsetU ⊆ X is called adownsetif x ∈ U and
y ≤ x imply y ∈ U . For each posetX we denote byO(X) the distributive lattice
(O(X),∩,∪, ∅, X) of all downsets ofX . Then every finite distributive latticeD is
isomorphic to the lattice of all downsets of(J(D),≤) and vice versa, every posetX is
isomorphic to the poset of join-irreducible elements ofO(X). We call(J(D),≤) the
dual posetof D and we callO(X) thedual latticeof X .

This duality can be extended to the duality of the categoryDLfin of finite bounded
distributive lattices and bounded lattice morphisms and the categoryPosfin of finite
posets and order-preserving maps. In fact, ifh : D → D′ is a bounded lattice mor-
phism, then the restriction ofh♭, the lower adjoint ofh, toJ(D′) is an order-preserving
map between(J(D′),≤′) and(J(D),≤), and if f : X → X ′ is an order-preserving
map between two posetsX andX ′, thenf↓ : O(X) → O(X ′), S 7→ ↓f(S) is

∨

-
preserving and its upper adjoint(f↓)♯ = f−1 : O(X ′) → O(X) is a bounded lattice
morphism. Moreover, injective bounded lattice morphisms (i.e. embeddings or, equiv-
alently, regular monomorphisms) correspond to surjectiveorder-preserving maps, and
surjective lattice morphisms (homomorphic images) correspond to order embeddings
(order-preserving and order-reflecting injective maps) that are in one-to-one correspon-
dence with subposets of the corresponding poset.

We also recall that an elementa, a 6= 1, of a distributive latticeD is calledmeet-
irreducible if for every b, c ∈ D we have thatb ∧ c ≤ a impliesb ≤ a or c ≤ a. We let
M(D) denote the set of all meet-irreducible elements ofD.

Proposition 2.1. Let D be a finite distributive lattice. Then for eachp ∈ J(D), there
existsκ(p) ∈M(D) such thatp � κ(p) and for eacha ∈ D we have

p ≤ a or a ≤ κ(p).

Proof. For p ∈ J(D), let κ(p) =
∨

{a ∈ D | p � a}. Then it is clear that the
condition involving alla ∈ D holds. Note that ifp ≤ κ(p) =

∨

{a ∈ D | p � a},
then, applying the join-irreducibility ofp, we geta ∈ D with p � a but p ≤ a, which
is clearly a contradiction. So it is true thatp � κ(p). Now we show thatκ(p) is meet
irreducible. First note that sincep is not belowκ(p), the latter cannot be equal to1. Also,
if a, b � κ(p) thenp ≤ a, b and thereforep ≤ a ∧ b. Thus it follows thata ∧ b � κ(p).
This concludes the proof of the proposition. ⊓⊔

Proposition 2.2. LetX be a finite set andFDL(X) the free distributive lattice overX .
Then the poset(J(FDL(X)),≤) of join-irreducible elements ofFDL(X) is isomorphic
to (P(X),⊇), whereP(X) is the power set ofX and each subsetS ⊆ X corresponds
to the conjunction

∧

S ∈ FDL(X). Moreover, forx ∈ X andS ⊆ X we have
∧

S ≤ x iff x ∈ S.



Proof. This is equivalent to the disjunctive normal form representation for elements of
FDL(X). ⊓⊔

3 Weak Heyting algebras

3.1 Freely adding weak implications

Definition 3.1. [10] A pair (A,→) is called aweak Heyting algebra3 if A is a bounded
distributive lattice and→: A2 → A a weak implication, that is, a binary operation
satisfying the following axioms for alla, b, c ∈ A:
(1) a→ a = 1,
(2) a→ (b ∧ c) = (a→ b) ∧ (a→ c).
(3) (a ∨ b)→ c = (a→ c) ∧ (b→ c).
(4) (a→ b) ∧ (b→ c) ≤ a→ c.

It is easy to see that by (2) weak implication is order-preserving in the second co-
ordinate and by (4) order-reversing in the first. The following lemma yields a useful
equational property of wHAs.

Lemma 3.2. Let (A,→) be a wHA. For eacha, b ∈ A we have

a→ b = a→ (a ∧ b).

Proof. By (2) we havea→ (a∧b) = (a→ a)∧(a→ b) and by (1) we havea→ a = 1
so we obtaina→ b = a→ (a ∧ b). ⊓⊔

Let D andD′ be distributive lattices. We let→ (D × D′) denote the set{a →
b : a ∈ D andb ∈ D′}. We stress that this is just a set bijective withD × D′. The
implication symbol is just a formal notation. For each distributive latticeD we also let
FDL(→ (D ×D)) denote the free distributive lattice over→ (D ×D). Moreover, we
let

H(D) = FDL(→ (D ×D))/≈

where≈ is the DL congruence generated by the axioms (1)–(4). We wantto stress that
we are not thinking of the axioms as a basis for an equational theory for a binary oper-
ation→ here. The point of view is that of describing a bounded distributive lattice by
generators and relations. That is, we want to find the quotient of the free bounded dis-
tributive lattice over the set→ (D×D) with respect to the lattice congruence generated
by the pairs of elements ofFDL(→ (D × D)) in (1)–(4) witha, b, c ranging overD.
For an elementa→ b ∈ FDL(→ (D ×D)) we denote by[a→ b]≈ the≈ equivalence
class ofa→ b.

The rest of the section will be devoted to showing that for each finite distributive
lattice D the poset(J(H(D)),≤) is isomorphic to(P(J(D)),⊆). Below we give a
dual proof of this fact. The dual proof, which relies on the fact that identifying two
elements of an algebra simply corresponds to throwing out those points of the dual that
are below one and not the other, is produced in a simple, modular, and systematic way
that doesn’t require any prior insight into the structure ofthese particular algebras.

3 In [10] weak Heyting algebras are called ‘weakly Heyting algebras’.



We start with a finite distributive latticeD and the free DL generated by the set

→ (D ×D) = {a→ b | a, b ∈ D}

of all formal arrows overD. As follows from Proposition 2.2,J(FDL(→ (D×D))) is
isomorphic to the power set of→ (D ×D), ordered by reverse inclusion. Each subset
of→ (D×D) corresponds to the conjunction of the elements in that subset; the empty
set of course corresponds to1. Now we want to take quotients of this free distributive
lattice wrt various lattice congruences, namely the ones generated by the set of instances
of the axioms of weak Heyting algebras.

The axiomx→ x = 1.

Here we want to take the quotient ofFDL(→ (D × D)) with respect to the lattice
congruence ofFDL(→ (D × D)) generated by the set{(a → a, 1) | a ∈ D}.
By duality this quotient is given dually by thesubset, call it P1, of our initial poset
P0 = J(FDL(→ (D×D))), consisting of those join-irreducibles ofFDL(→ (D×D))
that do not violate this axiom. Thus, forS ∈ J(FDL(→ (D × D))), S is admissible
provided

∀a ∈ D (
∧

S ≤ 1 ⇐⇒
∧

S ≤ a→ a).

Since all join-irreducibles are less than or equal to1, it follows that the only join-
irreducibles that are admissible are the ones that are belowa → a for all a ∈ D. That
is, viewed as subsets of→ (D×D), only the ones that containa→ a for eacha ∈ D:

P1 = {S ∈ P0 | a→ a ∈ S for eacha ∈ D}.

The axiomx→ (y ∧ z) = (x→ y) ∧ (x→ z).

We now want to take a further quotient and thus we want to keep only those join-
irreducibles fromP1 that do not violate this second axiom. That is,S ∈ P1 is admissible
provided

∀a, b, c (
∧

S ≤ a→ (b ∧ c) ⇐⇒
∧

S ≤ a→ b and
∧

S ≤ a→ c).

which means

∀a, b, c (a→ (b ∧ c) ∈ S ⇐⇒ a→ b ∈ S and a→ c ∈ S).

Proposition 3.3. The posetP2 of admissible join-irreducibles at this stage is order
isomorphic to the set

Q2 = {f : D → D | ∀a ∈ D f(a) ≤ a}

ordered pointwise.

Proof. An admissibleS from P2 corresponds to the functionfS : D → D given by

fS(a) =
∧

{b ∈ D | a→ b ∈ S}.



In the reverse direction a function inP2 corresponds to the admissible set

Sf = {a→ b | f(a) ≤ b}.

The proof that this establishes an order isomorphism is a straightforward verification.
⊓⊔

The axiom (x ∨ y)→ z = (x→ z) ∧ (y → z).

We want the subposet ofP2 consisting of thosef ’s such that

∀a, b, c
(

(a ∨ b)→ c ∈ Sf ⇐⇒ a→ c ∈ Sf and b→ c ∈ Sf

)

.

To this end notice that

∀a, b, c
(

(a ∨ b)→ c ∈ Sf ⇐⇒ (a→ c ∈ Sf and b→ c ∈ Sf)
)

⇐⇒ ∀a, b, c
(

f(a ∨ b) ≤ c ⇐⇒ (f(a) ≤ c and f(b) ≤ c)
)

⇐⇒ ∀a, b f(a ∨ b) = f(a) ∨ f(b).

That is, the poset,P3, of admissible join-irreducibles left at this stage is isomorphic to
the set

Q3 = {f : D → D | f is join-preserving and∀a ∈ D f(a) ≤ a}.

The axiom (x→ y) ∧ (y → z) ≤ x→ z.

It is not hard to see that this yields, in terms of join-preserving functionsf : D → D,

Q4 = {f ∈ Q3 | ∀a ∈ D f(a) ≤ f(f(a))}

= {f : D → D | f is join-preserving and∀a ∈ D f(a) ≤ f(f(a)) ≤ f(a) ≤ a}

= {f : D → D | f is join-preserving and∀a ∈ D f(f(a)) = f(a) ≤ a}.

We note that the elements ofQ4 are nuclei [15] on the order-dual lattice ofD. Since
thef ’s in Q4 are join and0 preserving, they are completely given by their action on
J(D). The additional property shows that these functions have lots of fixpoints. In fact,
we can show that they are completely described by their join-irreducible fixpoints.

Lemma 3.4. Letf ∈ Q4, then for eacha ∈ D we have

f(a) =
∨

{r ∈ J(D) | f(r) = r ≤ a}.

Proof. Clearly
∨

{r ∈ J(D) | f(r) = r ≤ a} ≤ f(a). For the converse, letr be
maximal inJ(D) wrt the property thatr ≤ f(a). Now it follows that

r ≤ f(a) = f(f(a)) =
∨

{f(q) | J(D) ∋ q ≤ f(a)}.

Sincer is join-irreducible, there isq ∈ J(D) with q ≤ f(a) and r ≤ f(q). Thus
r ≤ f(q) ≤ q ≤ f(a) and by maximality ofr we conclude thatq = r. Now r ≤ f(q)



andq = r yields r ≤ f(r). However,f(r) ≤ r as this holds for any element ofD
and thusf(r) = r. Since any element in a finite lattice is the join of the maximal
join-irreducibles below it, we obtain

f(a) =
∨

{r ∈ J(D) | r is maximal inJ(D) wrt r ≤ f(a)}

≤
∨

{r ∈ J(D) | f(r) = r ≤ f(a)} ≤ f(a).

Finally, notice that iff(r) = r ≤ f(a) then asf(a) ≤ a, we havef(r) = r ≤ a.
Conversely, iff(r) = r ≤ a thenr = f(r) = f(f(r)) ≤ f(a) and we have proved the
lemma. ⊓⊔

Proposition 3.5. The set of functions inQ4, ordered pointwise, is order isomorphic to
the powerset ofJ(D) in the usual inclusion order.

Proof. The order isomorphism is given by the following one-to-one correspondence

Q4 ⇆ P(J(D))

f 7→ {p ∈ J(D) | f(p) = p}

fT ←[ T

wherefT : D → D is given byfT (a) =
∨

{p ∈ J(D) | T ∋ p ≤ a}. Using the
lemma, it is straightforward to see that these two assignments are inverse to each other.
Checking thatfT is join preserving and satisfiesf2 = f ≤ idD is also straightforward.
Finally, it is clear thatfT ≤ fS if and only if T ⊆ S. ⊓⊔

Theorem 3.6. LetD be a finite distributive lattice andX = (J(D),≤) its dual poset.
Then

1. The poset(J(H(D)),≤) is isomorphic to the poset(P(X),⊆) of all subsets ofX
ordered by inclusion.

2. J(H(D)) = {[
∧

q 6∈T (q → κ(q))]≈ | T ⊆ J(D)}, (whereκ(q) is the element
defined in Proposition 2.1).

Proof. As shown above, the posetJ(H(D)), obtained fromJ(FDL(→(D ×D))) by
removing the elements that violate the congruence schemes (1)–(4), is isomorphic to the
posetQ4, andQ4 is in turn isomorphic toP(J(D)) ordered by inclusion, see Proposi-
tion 3.5.

In order to prove the second statement, letq ∈ J(D), and considerq → κ(q) ∈
FDL(→ (D×D)). If we representH(D) as the lattice of downsetsO(J(H(D))), then
the action of the quotient map on this element is given by

FDL(→ (D ×D)) → H(D)

q → κ(q) 7→ {T ′ ∈ P(J(D)) | q → κ(q) ∈ ST ′}.

Now



q → κ(q) ∈ ST ′ ⇐⇒ fT ′(q) ≤ κ(q)

⇐⇒
∨

(↓q ∩ T ′) ≤ κ(q)

⇐⇒ q 6∈ T ′.

The last equivalence follows from the fact thata ≤ κ(q) if and only if q � a and the
only element of↓q that violates this isq itself. We now can see that for anyT ⊆ J(D)
we have

FDL(→ (D ×D)) → H(D)

[
∧

q 6∈T

(q → κ(q))]≈ 7→ {T ′ ∈ P(J(D)) | ∀q (q 6∈ T ⇒ q → κ(q) ∈ ST ′}

= {T ′ ∈ P(J(D)) | ∀q (q 6∈ T ⇒ q 6∈ T ′}

= {T ′ ∈ P(J(D)) | ∀q (q ∈ T ′ ⇒ q ∈ T }

= {T ′ ∈ P(J(D)) | T ′ ⊆ T }.

That is, under the quotient mapFDL(→ (D×D)) → H(D), the elements
∧

q 6∈T (q →
κ(q)) are mapped to the principal downsets↓T , for eachT ∈ P(J(D)) = J(H(D)).
Since these principal downsets are exactly the join-irreducibles ofO(J(H(D))) =
H(D), we have that{ [

∧

q 6∈T (q → κ(q))]≈ | T ⊆ J(D) } = J(H(D)). ⊓⊔

Next we will prove a useful technical lemma that will be applied often throughout
the remainder of the paper. LetD be a finite distributive lattice. Fora, b ∈ D and
T ⊆ J(D) we writeT ≤ a→ b if

∧

ST ≤ a→ b in H(D), whereST = SfT
= {a→

b : fT (a) ≤ b}.

Lemma 3.7. Let D be a finite distributive lattice. For eacha, b ∈ D, a → b ∈ H(D)
andT ⊆ J(D) we have

T ≤ a→ b iff ∀p ∈ T (p ≤ a impliesp ≤ b)

Proof.

T ≤ a→ b ⇐⇒
∧

ST ≤ a→ b

⇐⇒ a→ b ∈ ST

⇐⇒ fT (a) ≤ b

⇐⇒
∨

(↓a ∩ T ) ≤ b

⇐⇒ ∀p ∈ T (p ≤ a impliesp ≤ b).

⊓⊔

It follows from Theorem 3.6(1) that if two finite distributive latticesD andD′ have
an equal number of join-irreducible elements, thenH(D) is isomorphic toH(D′).
To see this, we note that if|J(D)| = |J(D′)|, then(P(J(D)),⊆) is isomorphic to



(P(J(D′)),⊆). This, by Theorem 3.6(1), implies thatH(D) is isomorphic toH(D′).
In particular, any two non-equivalent orders on any finite set give rise to two non-
isomorphic distributive lattices with isomorphicH-images.

Remark 3.8.All the results in this section for finite distributive lattices can be gener-
alized to the infinite case. In the infinite case instead of finite posets we would need to
work with Priestley spaces and instead of the finite powersetwe need to work with the
Vietoris space (see Section 6). Since for our purposes finitedistributive lattices suffice,
for now, we will stick with the finite case.

3.2 Free weak Heyting algebras

In the coalgebraic approach to generating the free algebra,it is a fact of central impor-
tance thatH as described here is actually a functor. That is, for a DL homomorphism
h : D → E one can define a DL homomorphismH(h) : H(D) → H(E) so thatH
becomes a functor on the category of DLs. To see this, we only need to note thatH is
defined by rank 1 axioms. We recall that for an operatorf (in our casef is the weak
implication→) an equation is ofrank 1 if each variable in the equation is under the
scope of exactly one occurrence off and an equation is ofrank 0-1 if each variable
in the equation is under the scope of at most one occurrence off . It is easy to check
that axioms (1)-(4) for weak Heyting algebras are rank 1. Therefore,H gives rise to a
functorH : DL → DL [2, 18]. Moreover, the category of weak Heyting algebras is
isomorphic to the categoryAlg(H) of the algebras for the functorH . For the details of
such correspondences we refer to [2, 1, 13, 7, 18]. We would like to give a concrete de-
scription of howH applies to DL homomorphisms. We describe this in algebraic terms
here and give the dual construction via Birkhoff duality.

Let h : D → E be a DL homomorphism. Recall that the dual map fromJ(E)
to J(D) is just the lower adjointh♭ with domain and codomain properly restricted.
By abuse of notation we will just denote this map byh♭, leaving it to the reader
to decide what the proper domain and codomain is. NowH(D) = FDL(→ (D ×
D))/<Ax(D)>, where<Ax(D)> is the DL congruence generated byAx(D) and
Ax(D) is the set of all instances of the axioms (1)-(4) witha, b, c ∈ D. Also letqD be
the quotient map corresponding to mod’ing out by<Ax(D)>. The maph : D → E
yields a maph × h : D × D −→ E × E and this of course yields a lattice homo-
morphismFDL(h × h) : FDL(→ (D × D)) −→ FDL(→ (E × E)). Now the point
is thatFDL(h × h) carries elements ofAx(D) to elements ofAx(E) and thus in par-
ticular to elements of<Ax(E)> (it is an easy verification and only requiresh to be
a homomorphism for axiom schemes (2) and (3)). This is equivalent to saying that
Ax(D) ⊆ Ker(qE ◦ FDL(h × h)) and thus<Ax(D)> ⊆ Ker(qE ◦ FDL(h × h)),
or equivalently that there is a unique mapH(h) : H(D) → H(E) that makes the
following diagram commute

FDL(→ (D ×D))
FDL(h×h) //

qD

����

FDL(→ (E × E))

qE

����
H(D)

H(h) //___________ H(E).



The dual diagram is

P(D ×D) oo (h×h)−1

P(E × E)

P(J(D))
� ?

eD

OO

oo P(h♭)
_______ P(J(E))

� ?

eE

OO

The mapeD : P(D) →֒ P(D ×D) is the embedding, viaQ4 and so on intoP0 as
obtained above. That is,eD(T ) = {a→ b | ∀p ∈ T (p ≤ a⇒ p ≤ b}. Now in this dual
setting, the fact that there is a mapP(h♭) is equivalent to the fact that(h × h)−1 ◦ eE

maps into the image of the embeddingeD. This is easily verified:

(h× h)−1(eE(T )) = {a→ b | ∀q ∈ T (q ≤ h(a)⇒ q ≤ h(b)}

= {a→ b | ∀q ∈ T (h♭(q) ≤ a⇒ h♭(q) ≤ b}

= {a→ b | ∀p ∈ h♭(T ) (p ≤ a⇒ p ≤ b}

= eD(h♭(T )).

Thus we can read off directly what the mapP(h♭) is: it is just forward image under
h♭. That is, if we call the dual ofh : D → E by the namef : J(E) → J(D), then
P(f) = f [ ] wheref [ ] is the lifted forward image mapping subsets ofJ(E) to subsets
of J(D). Finally, we note thatP satisfiesP(f) is an embedding if and only iff is
injective, andP(f) is surjective if and only iff is surjective.

Remark 3.9.It follows from Theorem 3.6(1) that the functorH can be represented as a
composition of two functors. LetB : DLfin → BAfin be the functor from the category
of finite distributive lattices to the category of finite Boolean algebras which maps every
finite distributive lattice to its free Boolean extension—the (unique) Boolean algebra
generated by this distributive lattice. It is well known [19] that the dual of the functor
B is the forgetful functor from the category of finite posets tothe category of finite sets
which maps every finite poset to its underlying set. Further,let alsoHB : BAfin →
DLfin be the functorH restricted to Boolean algebras. That is, given a Boolean algebra
A we defineHB(A) as the free DL over→ (B, B) modded out by the axioms (1)-(4)
of wHAs. Then the functor which is dual toHB maps each finite setX to (P(X),⊆)
and thereforeH : DLfin → DLfin is the composition ofB with HB.

Since weak Heyting algebras are the algebras for the functorH , we can make use
of coalgebraic methods for constructing free weak Heyting algebras. Similarly to [7],
where free modal algebras and free distributive modal algebras were constructed, we
construct finitely generated free weak Heyting algebras as initial algebras ofAlg(H).
That is, we have a sequence of bounded distributive lattices, each embedded in the next:

n −→ FDL(n), the free bounded distributive lattice onn generators

D0 = FDL(n)

Dk+1 = D0 + H(Dk), where+ is the coproduct inDL

i0 : D0 → D0 + H(D0) = D1 the embedding given by coproduct

ik : Dk → Dk+1 whereik = idD0
+ H(ik−1)



For a, b ∈ Dk, we denote bya →k b the equivalence class[a → b]≈ ∈ H(Dk) ⊆
Dk+1. Now, by applying the technique of [2], [1], [13], [7] to weakHeyting algebras,
we arrive at the following theorem.

Theorem 3.10. The direct limit(Dω , (Dk → Dω)k) in DL of the system(Dk, ik :
Dk → Dk+1)k with the binary operation→ω: Dω ×Dω → Dω defined bya→ω b =
a→k b, for a, b ∈ Dk is the freen-generated weak Heyting algebra when we embedn
in Dω via n→ D0 → Dω.

Now we will look at the dual of(Dω,→ω). Let X0 = P(n) be the dual ofD0 and let

Xk+1 = X0 × P(Xk)

be the dual ofDk+1.

Theorem 3.11. The sequence(Xk)k<ω with mapsπk : X0×P(Xk)→ Xk defined by

πk = idX0
× P(πk−1) i.e. πk(x, A) = (x, πk−1[A])

is dual to the sequence(Dk)k<ω with mapsik : Dk → Dk+1. In particular, theπk ’s
are surjective.

Proof. The dual ofD0 is X0 = P(n), and sinceDk+1 = D0 + H(Dk), it follows that
Xk+1 = X0 × P(Xk) as sums go to products and asH is dual toP . For the maps,
π0 : X0 × P(X0) → X0 is just the projection onto the first coordinate sincei0 is the
injection given by the sum construction. We note thatπ0 is surjective. Now the dual
πk : Xk+1 = X0 × P(Xk) → Xk = X0 × P(Xk−1) of ik = idD0

+ H(ik−1) is
idX0

× P(πk−1) which is exactly the map given in the statement of the theorem. Note
that a map of the formX×Y → X×Z given by(x, y) 7→ (x, f(y)) wheref : Y → Z
is surjective if and only the mapf is. Also, as we saw aboveP(πk) is surjective if and
only if πk is. Thus by induction, all theπk ’s are surjective. ⊓⊔

4 Pre-Heyting algebras

In this section we define pre-Heyting algebras which form a subvariety of weak Heyting
algebras and describe free pre-Heyting algebras. We first note that, for any weak Heyt-
ing algebraA, the mapA → A given bya 7→ (1 → a) is meet-preserving and also
preserves1 by virtue of the first two axioms of weak Heyting algebras. Forthe same
reason, the map from a distributive latticeD to H(D) mapping each elementa of D to
1 → a also is meet-preserving and preserves1. For Heyting algebras more is true: the
mapH → H given bya 7→ (1 → a) is just the identity map and thus, in particular,
it is a lattice homomorphism. In other words, Heyting algebras satisfy additional rank
1 axioms beyond those of weak Heyting algebras.

Definition 4.1. A weak Heyting algebra(A,→) is called apre-Heyting algebra, PHA
for short, if the following additional axioms are satisfied for all a, b ∈ A:

(5) 1→ 0 = 0,



(6) (1→ a) ∨ (1→ b) = 1→ (a ∨ b).

Since these are again rank 1 axioms, we can obtain a description of the free finitely
generated pre-Heyting algebras using the same method as forweak Heyting algebras.
Accordingly, for a finite distributive latticeD, similarly to what we did in the previous
section, we let

K(D) = FDL(→ (D ×D))/≈

where≈ is the DL congruence generated by the axioms (1)–(6) viewed as relational
schemas. This of course means we can just proceed from where we left off in Section 3
and identify the further quotient ofH(D) obtained by the schema(1 → a) ∨ (1 →
b) ≈ 1 → (a ∨ b) for a andb ranging over the elements ofD and1 → 0 ≈ 0. That is,
we need to calculate

K(D) = H(D)/≈

where≈ is the DL congruence generated by the relation schema given by axioms (5)-
(6).

We say that a subsetS of a poset(X,≤) is rooted if there existsp ∈ S such that
q ≤ p for eachq ∈ S. Note that it follows from the definition that a rooted subsetis
necessarily non-empty. We denote byPr(X) the set of all rooted subsets ofX .

Theorem 4.2. LetD be a finite distributive lattice andX = (J(D),≤) its dual poset.
Then

1. The poset(J(K(D)),≤) is isomorphic to the poset(Pr(X),⊆) of all rooted sub-
sets ofX ordered by inclusion.

2. J(K(D)) = {[(1→ x) ∧ (
∧

q<x,q 6∈T ′(q → κ(q))]≈ | T ′ ⊆ ↓x \ {x}, x ∈ X}.
3. The mapD → K(D) given bya 7→ (1 → a) is an injective bounded lattice

homomorphism whose dual is the surjective order-preserving maproot : Pr(X)→
X sending each rooted subset ofX to its root.

Proof. (1) By Theorem 3.6(1),(J(H(D)),≤) is isomorphic to(P(X),⊆). Thus, we
need to show that the rooted subsets ofX are exactly the subsets which are admissible
with respect to axioms (5) and (6). For the axiom (5), it may beworth clarifying the
meaning of this axiom: the0 (and1) on the left side are elements ofD, and the expres-
sion1→ 0 is one of the generators ofK(D), whereas the0 on the right of the equality
is the bottom of the bounded latticeK(D) — we will denote it by0K(D) for now. An
S ⊆ X is admissible for (5) provided

S ≤ 1→ 0 ⇐⇒ S ≤ 0K(D).

Now by Lemma 3.7,S ≤ 1 → 0 if and only if, for all p ∈ S, p ≤ 1 impliesp ≤ 0.
Since the former is true for everyp ∈ X and the latter is false for allp ∈ X , the only
S ∈ P(X) satisfying this condition isS = ∅. On the other hand, as in any lattice, no
join-irreducible inK(D) is below0K(D). Thus (5) eliminatesS = ∅.

Weak Heyting implication is meet-preserving and thus order-preserving in the sec-
ond coordinate so that we have that1→ (a∨b) ≥ (1→ a)∨(1→ b) already inH(D)



for everyD. Therefore, a setS ⊆ X is admissible with respect to (5) and (6) iffS 6= ∅
and

S ≤ 1→ (a ∨ b) implies S ≤ 1→ a or S ≤ 1→ b.

Now by Lemma 3.7,S ≤ 1→ x iff S ⊆ ↓x, so for non-emptyS we needS ⊆ ↓(a∨ b)
to imply thatS ⊆ ↓a or S ⊆ ↓b for all a, b ∈ D. This is easily seen to be equivalent
to rootedness: IfS ⊆ X is rooted with rootp. ThenS ⊆ ↓(a ∨ b) impliesp ≤ a ∨ b
and thusp ≤ a or p ≤ b so thatS ⊆ ↓a or S ⊆ ↓b. Conversely, ifS is admissible then
S 6= ∅ and, as it is finite, every element ofS is below a maximal element ofS. If p ∈ S
is maximal but not the maximum ofS thenS ⊆ ↓(p ∨ a), wherea =

∨

(S \ {p}), but
S 6⊆ ↓p andS 6⊆ ↓a.

(2) The proof is similar to to the proof of Theorem 3.6(2). Recall that for anyT ⊆ X
we have that the join-irreducible{T ′ ∈ P(X) | T ′ ⊆ T } = ↓T inO(P(X))) ∼= K(D)
is equal to[

∧

q 6∈T (q → κ(q))]≈. Also 1 → x is join-irreducible and corresponds to
↓x ⊆ X . That is,

[1→ x]≈ = [
∧

q�x

(q → κ(q))]≈.

Thus, in particular, forT ⊆ X rooted with rootx andT ′ = T \{x}, the join-irreducible
corresponding toT is given by

[
∧

q 6∈T

(q → κ(q)]≈ = [(
∧

q�x

(q → κ(q)) ∧ (
∧

q≤x,q 6∈T

(q → κ(q))]≈

= [(1→ x) ∧ (
∧

q<x,q 6∈T ′

(q → κ(q))]≈.

Since this is the case inH(D), it is certainly also true in the further quotientK(D) and
in (1) we have shown that all join-irreducibles ofK(D) correspond to rooted subsets of
X , thus the statement follows.

(3) The mapD → K(D) given bya 7→ (1 → a) is clearly a homomorphism
since we have quotiented out by all the necessary relations:[1→ 1]≈ = 1K(D) by (1),
[1 → 0]≈ = 0K(D) by (5), and the map is meet and join preserving by (2) and (6), re-
spectively. As we saw in Section 2, the dual of a homomorphismbetween finite lattices
is the restriction to join-irreducibles of its lower adjoint, that is, our homomorphism is
dual to the mapr : Pr(X)→ X given by

∀T ∈ Pr(X) ∀a ∈ D (r(T ) ≤ a ⇐⇒ T ≤ (1→ a)).

For T ∈ Pr(X) we haveT ≤ (1 → a) =
∨

x∈X,x≤a(1 → x) if and only if there is
anx ∈ X with x ≤ a andT ≤ (1 → x). FurthermoreT ≤ (1 → x) if and only if
T ⊆ ↓ x if and only if root(T ) ≤ x. That is,r(T ) ≤ a if and only if root(T ) ≤ a
so that, indeed,root(T ) = r(T ). It is clear that the maproot is surjective and thus the
dual homomorphismD →֒ K(D) is injective. ⊓⊔

The following technical proposition will be used for obtaining some important re-
sults in the next section of the paper.



Proposition 4.3. Let D be a finite distributive lattice andX = (J(D),≤) its dual
poset. LetS ∈ Pr(X) and letx ∈ X . IdentifyingPr(X) with J(K(D)) we have the
following equivalences

root(S) = x

⇐⇒ S ≤ 1→ x butS � 1→ κ(x)

⇐⇒ it is not the case that(S ≤ 1→ x =⇒ S ≤ 1→ κ(x)).

Proof. We first assume thatS ≤ 1 → x andS � 1 → κ(x). ThenS ⊆ ↓x and
S 6⊆ ↓κ(x). It follows that for eachs ∈ S we haves ≤ x and there ist ∈ S with
t 6≤ κ(x). Therefore, we havex ≤ t. Sincet ∈ S, we obtaint = x. Sox ∈ S. This
implies thatx is the root ofS, which means thatroot(S) = x. Conversely, suppose
root(S) = x. ThenS ⊆ ↓x andx ∈ S. SoS ≤ 1 → x. On the other hand, we know
that y 6≤ κ(y), for eachy ∈ J(D). Therefore,x 6≤ κ(x) and thusS 6⊆ ↓κ(x). This
implies thatS 6≤ 1 → κ(x). That (S ≤ 1 → x andS � 1 → κ(x)) is equivalent to
(it is not the case that(S ≤ 1→ x =⇒ S ≤ 1→ κ(x))) is obvious.

Since pre-Heyting algebras are the algebras for the functorK, we can construct free
pre-Heyting algebras from the functorK similarly to how we constructed free weak
Heyting algebras from the functorH in the previous section. Given an order-preserving
mapf : X → X ′ between two finite posetsX andX ′ we definePr(f) : Pr(X) →
Pr(X

′) by settingPr(f) = f [ ]. It is easy to see that this is the action of the functor
Pr dual toK. Then we will have the analogues of Theorems 3.10 and 3.11 forfree
pre-Heyting algebras.

We consider the following sequence of bounded distributivelattices:

D0 = FDL(n)

Dk+1 = D0 + K(Dk),

i0 : D0 → D0 + K(D0) = D1 the embedding given by coproduct

ik : Dk → Dk+1 whereik = idD0
+ K(ik−1)

In the same way as for weak Heyting algebras we have the following description of
free pre-Heyting algebras.

Theorem 4.4. The direct limit(Dω , (Dk → Dω)k) in DL of the system(Dk, ik :
Dk → Dk+1)k with the binary operation→ω: Dω ×Dω → Dω defined bya→ω b =
a→k b, for a, b ∈ Dk is the freen-generated pre-Heyting algebra.

Let X0 be the dual ofD0 and let

Xk+1 = X0 × Pr(Xk)

be the dual ofDk+1.

Theorem 4.5. The sequence(Xk)k<ω with mapsπk : X0×Pr(Xk)→ Xk defined by

πk = idX0
× Pr(πk−1) i.e. πk(x, A) = (x, πk−1[A])

is dual to the sequence(Dk)k<ω with mapsik : Dk → Dk+1. In particular, theπk ’s
are surjective.

Proof. The proof is analogues to the proof of Theorem 3.11. ⊓⊔



5 Heyting algebras

In this section we will apply the technique of building free weak and pre-Heyting al-
gebras to describe free Heyting algebras. We recall the following definition of Heyting
algebras relative to weak Heyting algebras.

Definition 5.1. [15] A weak Heyting algebra(A,→) is called aHeyting algebra, HA
for short, if the following two axioms are satisfied for alla, b ∈ A:

(i) b ≤ a→ b,
(ii) a ∧ (a→ b) ≤ b.

Let D be a finite distributive lattice. We have seen how to build thefree weak Heyt-
ing algebra and the free pre-Heyting algebra overD incrementally. LetFHA(D) denote
the free HA freely generated by the bounded distributive latticeD. Further letFn

HA(D)
denote the elements ofFHA(D) of →-rank less than or equaln. Then eachFn

HA(D)
is a distributive lattice, the bounded lattice reduct ofFHA(D) is the direct limit (union)
of the chain

D = F 0
HA(D) ⊆ F 1

HA(D) ⊆ F 2
HA(D) . . .

and the implication onFHA(D) is given by the maps→: (Fn
HA(D))2 → Fn+1

HA (D)
with (a, b) 7→ (a → b). Further, since any Heyting algebra is a pre-Heyting algebra
and the inclusionFn

HA(D) ⊆ Fn+1
HA (D) may be seen as given by the mappinga 7→

(1→ a), the natural maps sending generators to generators make thefollowing colimit
diagrams commute

D

id
����

� � i0 // K(D)

g1����

� � i1 // K(K(D))

g2����

� � i2 // . . .

D
� � j0 // FHA(D)

� � j1 // F 2
HA(D)

� � j2 // . . .

Notice that under the assignmenta 7→ 1→ a, the equation (i) becomes1→ b ≤ a→ b
which is true in any pre HA by (2), and (ii) becomes(1 → a) ∧ (a → b) ≤ (1 → b)
which is true in any pre HA by virtue of (4). So these equationsare already satisfied
in the steps of the upper sequence. However, an easy calculation shows that forD the
three-element lattice1 → (u → 0) and(1→ u)→ (1→ 0) are not equal (whereu is
the middle element) thus the implication is not well-definedon the limit of the upper
sequence. We remedy this by taking a quotient with respect tothe relational scheme

1→ (a→ b) = (1→ a)→ (1→ b)

in the second iteration of the functorK and onwards. We proceed, as we’ve done
throughout this paper by identifying the dual correspondent of this equation.

Proposition 5.2. LetD be a finite distributive lattice anda, b ∈ D. The inequality

1→ (a→ b) ≤ (1→ a)→ (1→ b)

holds inK(K(D)).



Proof. By axiom (3) it follows that→ is order reversing in the first coordinate so that
we have1 → (a → b) ≤ (1 → a) → (a → b) since1 ≥ 1 → a. Also by Lemma 3.2,
we have(1 → a) → (a → b) = (1 → a) → [(1 → a) ∧ (a → b)]. Now using (4) we
have(1→ a)∧ (a→ b) ≤ 1→ b so that(1→ a)→ (a→ b) ≤ (1→ a)→ (1→ b).
By transitivity of the order we have the desired result. ⊓⊔

Proposition 5.3. Let D be a finite distributive lattice andX = (J(D),≤) its dual
poset. Further, letθ be a congruence onK(K(D)). Then the following are equivalent:

1. For all a, b ∈ D the inequality(1 → a) → (1 → b) ≤ 1 → (a → b) holds in
K(K(D))/θ;

2. For all x, y ∈ X the inequality(1→ x)→ (1→ κ(y)) ≤ 1→ (x→ κ(y)) holds
in K(K(D))/θ

Proof. (i) implies (ii) is clear since (ii) is a special case of (i). We prove that (ii) implies
(i).

(1→ a)→ (1→ b) = (
∨

X∋x≤a

(1→ x))→ (
∧

X∋y�b

(1→ κ(y)))

=
∧

X∋x≤a
X∋y�b

((1→ x)→ (1→ κ(y)))

≤
∧

X∋x≤a
X∋y�b

(1→ (x→ κ(y)))

= 1→
∧

X∋x≤a
X∋y�b

(x→ κ(y))

= 1→ (a→ b)).

⊓⊔

We are now ready to translate this into a dual property which we will call (G) after
Ghilardi who introduced it in [12].

Proposition 5.4. LetX be a finite poset. The following conditions are equivalent:

1. ∀x, y ∈ X the inequalities

(1→ x)→ (1→ κ(y)) ≤ 1→ (x→ κ(y)) hold inO(Pr(Pr(X));

2. ∀τ ∈ Pr(Pr(X)) ∀T ∈ τ ∀S ∈ Pr(X)

(S ≤ T =⇒ ∃T ′ ∈ τ (T ′ ≤ T androot(S) = root(T ′)) (G)

Proof. First we prove that (1) implies (2). To this end suppose (1) holds and letT ∈
τ ∈ Pr(Pr(X)) and S ∈ Pr(X). Suppose that for allT ′ ∈ τ either T ′ � T or



root(S) 6= root(T ′). Now considerτT = ↓T ∩ τ . We obviously have that↓T ∩ τ is a
rooted subset ofPr(X) and therefore

τT = (↓T ∩ τ) ∈ Pr(Pr(X)) (⋆)2.

We haveroot(S) 6= root(T ′) for all T ′ ∈ τT , and thus, lettingx = root(S) and using
the observation in Proposition 4.3, we have

∀T ′ ∈ τT root(T ′) 6= x

⇐⇒ ∀T ′ ∈ τT (T ′ ≤ 1→ x =⇒ T ′ ≤ 1→ κ(x))

⇐⇒ τT ≤ (1→ x)→ (1→ κ(x))

=⇒ τT ≤ 1→ (x→ κ(x))

⇐⇒ ∀T ′ ∈ τT T ′ ≤ x→ κ(x)

⇐⇒ ∀T ′ ∈ τT ∀y ∈ T ′ (y ≤ x =⇒ y ≤ κ(x))

⇐⇒ ∀T ′ ∈ τT x 6∈ T ′

=⇒ x 6∈ T.

The two implications come from the fact that we assume that (1) holds and because, in
particular,T ∈ τT , respectively. Now we havex = root(S) ∈ S butx 6∈ T soS � T
and we have proved (2) by contraposition.

Now suppose (2) holds, letx, y ∈ X , and letτ ∈ Pr(Pr(X)) with τ ≤ (1→ x)→ (1→ κ(y)).

τ ≤ (1→ x)→ (1→ κ(y))

⇐⇒ ∀T ∈ τ (T ≤ 1→ x =⇒ T ≤ 1→ κ(y))

⇐⇒ ∀T ∈ τ (T ≤ ↓x =⇒ T ≤ ↓κ(y)).

We want to show thatT ≤ x → κ(y) for eachT ∈ τ . That is, that for allz ∈ T we
havez ≤ x impliesz ≤ κ(y). So letz ∈ T with z ≤ x. We obviously have that↓z ∩ T
is a rooted subset ofX and therefore

Tz = (↓z ∩ T ) ∈ Pr(X) (⋆)1.

SinceTz ≤ T it follows by (2) that

∃T ′ ∈ τ (T ′ ≤ T andz = root(Tz) = root(T ′)).

Now x ≥ z = root(Tz) = root(T ′) implies thatT ′ ≤ ↓x and thus we haveT ′ ≤
↓κ(y). In particular,z = root(T ′) ≤ κ(y). That is, we have shown that for allz ∈ T ,
if z ≤ x thenz ≤ κ(y) as required. ⊓⊔

Our strategy in building the freen-generated Heyting algebra will be to start withD,
the freen-generated distributive lattice, embed it inK(D), and then this in a quotient
of K(K(D)) obtained by modding out by1 → (a → b) = (1 → a) → (1 → b) for



a, b ∈ D. For the further iterations ofK this identification is iterated. The following is
the general situation that we need to consider, viewed dually:

X0
oooo root

Pr(X0) oooo root
Pr(Pr(X0))

X1

� ?

OO

oooo root
Pr(X1)

� ?

OO

X2

� ?

OO

For this reason the inductive step deals with a quotient of a quotient and we need
to refine the Proposition 5.4 above. We note that it holds not only for Pr(X) and
Pr(Pr(X)), but also for any subsetsX1 ⊆ Pr(X) and X2 ⊆ Pr(X1) satisfying
(⋆)1 and (⋆)2, respectively. Indeed, these are the only specific properties ofPr(X)
andPr(Pr(X)) that we used in the proof of the proposition. Therefore, we have the
following corollary.

Corollary 5.5. LetX0 be a finite poset,X1 a sub-poset ofPr(X0), andX2 a sub-poset
ofPr(X1). For i = 1 and2, let (⋆)i be the condition

x ∈ T ∈ Xi =⇒ Tx = (↓x ∩ T ) ∈ Xi

If the conditions (⋆)1 and (⋆)2 both hold then the following are equivalent:

1. ∀x, y ∈ X0 the inequalities

(1→ x)→ (1→ κ(y)) ≤ 1→ (x→ κ(y)) hold inO(X2);

2. ∀τ ∈ X2 ∀T ∈ τ ∀S ∈ X1

(S ≤ T =⇒ ∃T ′ ∈ τ (T ′ ≤ T androot(S) = root(T ′)). (G)

Proof. The proof is exactly the same as the proof of Proposition 5.4 we just need to
replacePr(X) by X1 andPr(Pr(X)) by X2. We also note that for(1)⇒ (2) direction
we use just the condition(⋆)2 and for(2)⇒ (1) we use only(⋆)1. ⊓⊔

We now consider the following sequence of finite posets

X0 = J(FDL(n))(= P(n))

X1 = Pr(X0)

Forn ≥ 1 Xn+1 = {τ ∈ Pr(Xn) | ∀T ∈ τ ∀S ∈ Xn

(S ≤ T =⇒ ∃T ′ ∈ τ (T ′ ≤ T androot(S) = root(T ′))}.

We denote by∇ the sequence

X0
oo root

X1
oo root

X2 . . .

Forn ≥ 1, we say that∇ satisfies(⋆)n if

x ∈ T ∈ Xn =⇒ Tx = (↓x ∩ T ) ∈ Xn.



Lemma 5.6. ∇ satisfies(⋆)n for eachn ≥ 1 and the root mapsroot : Xn+1 → Xn

are surjective for eachn ≥ 0.

Proof. X1 consists of all rooted subsets ofX0 and thus(⋆)1 is clearly satisfied. Now
let n ≥ 2. We assume thatT ∈ τ ∈ Xn and we show thatτT = ↓T ∩ τ also belongs to
Xn. So letU ∈ τT , S ∈ Xn andS ≤ U . Then sinceU ∈ τ , there existsU ′ ∈ τ such
thatU ′ ≤ U androot(S) = root(U ′). But U ∈ τT implies thatU ≤ T . Therefore we
haveU ′ ≤ T and soU ′ ∈ τT . Thus,τT ∈ Xn and∇ satisfies(⋆)n, for eachn ≥ 1.
Finally, we show that all theroot maps are surjective. To see this, assumeU ∈ Xn. We
show that↓U ∈ Xn+1. SupposeT ∈ ↓U and for someS ∈ Xn we haveS ≤ T . Then
S ∈ ↓U and by settingT ′ = S we easily satisfy the condition(G). Finally, note that
root(↓U) = U and thusroot : Xn+1 → Xn is surjective. ⊓⊔

Let ∆ be the system

D0
� � i0 // D1

� � i1 // D2 . . .

of distributive lattices dual to∇. For eachn ≥ 0, in : Dn → Dn+1, is a lattice
homomorphism dual toroot. By Theorem 4.2(3)in(a) = 1 → a, for a ∈ Dn. By
Lemma 5.6,root is surjective, so eachin is injective. EachXn+1 ⊆ Pr(Xn) so that
eachDn+1 is a quotient ofK(Dn) and thus, for eachn, we also have partial implication
operations:

→n: Dn ×Dn → Dn+1

(a, b) 7→ [a→ b].

Here[a → b] is the equivalence class ofa → b ∈ K(Dn) as an element inDn+1. Let
Dω be the limit of∆ in the category of distributive lattices thenDω is naturally turned
into a Heyting algebra.

Lemma 5.7. The operations→n can be extended to an operation→ω on Dω and the
algebra(Dω,→ω) is a Heyting algebra.

Proof. The colimit Dω of ∆ may be constructed as the union of theDns with Dn

identified with the image ofin : Dn →֒ Dn+1. It is then clear that the partial operations
→n: Dn ×Dn → Dn+1 yield a total, well-defined binary operation provided, for all
n ≥ 0 and alla, b ∈ Dn, we havein+1(→n (a, b)) =→n+1 (in(a), in(b)). But this is
exactly

1→n+1 (a→n b) = (1→n a)→n+1 (1→n b).

As we’ve shown in Corollary 5.5 and Lemma 5.6, the sequence∇, and thus the dual
sequence∆ have been defined exactly so that this holds. It remains to show that the
algebra(Dω,→) is a Heyting algebra. Leta ∈ Dω, then there is somen ≥ 0 with a ∈
Dn. Nowa→ω a = a→n a ∈ Dn+1. SinceDn+1 is a further quotient ofK(Dn) and
a→n a = 1 already inK(Dn), this is certainly also true inDn+1 and1Dn+1

= 1Dω
so

the equation (1) of weak Heyting algebras is satisfied in(Dω,→ω). Similarly each of



the equations (2)-(4) are satisfied in(Dω,→ω) so that it is a weak Heyting algebra. But
the two last equations, (i) and (ii) are also satisfied as explained in the discussion at the
beginning of this section: Leta, b ∈ Dω. Then there existk, n ≥ 0 such thata ∈ Dk

and b ∈ Dn. Without loss of generality we may assume thatk ≤ n and then, by
identifyinga with its image under the embedding ofDk into Dn, we obtaina, b ∈ Dn.
Now in(b) = 1 →n b ≤ a →n b follows from the fact that→n is a weak Heyting
implication and a weak Heyting implication is order-reversing in the first coordinate.
Thus,in(b) ≤ a →n b, which means thatb ≤ a → b is satisfied inDω. Moreover, by
axiom (4) of weak Heyting algebras we have(1 →n a) ∧ (a →n b) ≤ 1 →n b. Thus,
in(a) ∧ (a →n b) ≤ in(b), which means thata ∧ (a → b) ≤ b is satisfied inDω and
(Dω,→) is a Heyting algebra. ⊓⊔

Corollary 5.8. (Dω,→) is then-generated free Heyting algebra.

Proof. Let FHA(n) denote the free HA freely generated byn generators. This is of
course the same as the free HA generated byD, FHA(D), whereD is the free distribu-
tive lattice generated byn elements. As discussed at the beginning of this section this
lattice is the colimit (union) of the chain

D = F 0
HA(D) ⊆ F 1

HA(D) ⊆ F 2
HA(D) . . .

and the implication onFHA(D) is given by the maps→: (Fn
HA(D))2 → Fn+1

HA (D)
with (a, b) 7→ (a → b). Further, the natural maps sending generators to generators
make the following colimit diagrams commute

D

id
����

� � // K(D)

����

� � // K(K(D))

����

� � // . . .

D
� � j0 // FHA(D)

� � j1 // F 2
HA(D)

� � j2 // . . .

Now, the system∆ is obtained from the upper sequence by quotienting out by the
equations1 →n+1 (a →n b) = (1 →n a) →n+1 (1 →n b) for eachn ≥ 0. Since
these equations all hold for the lower sequence, it follows that theDns are intermediate
quotients:

D

id����

� � // K(D)

����

� � // K(K(D))

����

� � // . . .

D0

id
����

� � i0 // D1

����

� � i1 // D2

����

� � i2 // . . .

D
� � j0 // FHA(D)

� � j1 // F 2
HA(D)

� � j2 // . . .

Therefore,FHA(n) is a homomorphic image ofDω and any mapf : n → B with
B a Heyting algebra defines a unique extensionf̃ : FHA(n) → B so thatf̃ ◦ i = f
wherei : n → FHA(n) is the injection of the free generators. Sincei actually maps
into the sublattice ofFHA(n) generated byn, which is the initial latticeD = D0 in
our sequences, composition off̃ with the quotient map fromDω to FHA(n) shows that



Dω also has the universal mapping property (without the uniqueness). The uniqueness
follows sinceDω clearly is generated byn as HA (sinceD0 is generated byn as a
bounded lattice,D1 is generated byD0 using→0, and so on). Since the free HA on
n generators is unique up to isomorphism andDω has its universal mapping property
and is a Heyting algebra, it follows it is the free HA (and the quotient map fromDω to
FHA(n) is in fact an isomorphism). ⊓⊔

6 A coalgebraic representation of wHAs and PHAs

In this section we discuss a coalgebraic semantics for weak and pre-Heyting algebras.
A coalgebraic representation of modal algebras and distributive modal algebras can be
found in [1], [16] and [20], [7], respectively.

We recall that aStone spaceis a compact Hausdorff space with a basis of clopen
sets. For a Stone spaceX , its Vietoris spaceV (X) is defined as the set of all closed
subsets ofX , endowed with the topology generated by the subbasis

1. �U = {F ∈ V (X) : F ⊆ U},
2. ♦U = {F ∈ V (X) : F ∩ U 6= ∅},

whereU ranges over all clopen subsets ofX . It is well known thatX is a Stone space iff
V (X) is a Stone space. LetX andX ′ be Stone spaces andf : X → X ′ be a continuous
map. ThenV (f) = f [ ] is a continuous map betweenV (X) andV (X ′). We denote by
V the functor on Stone spaces that maps every Stone spaceX to its Vietoris space
V (X) and maps every continuous mapf to V (f). Every modal algebra(B, �) can be
represented as a coalgebra(X, α : X → V X) for the Vietoris functor on Stone spaces
[1, 16]. A coalgebraic representation of distributive modal algebras can be found in [20]
and [7]. We note that modal algebras as well as distributive modal algebras are given by
rank 1 axioms. Using the same technique as in Section 3, one can obtain a description
of free modal algebras and free distributive modal algebras[1], [13], [7].

Our goal is to give a coalgebraic representation for weak Heyting algebras and pre-
Heyting algebras. Recall that aPriestley spaceis a pair(X,≤) whereX is a Stone
space and≤ is a reflexive, symmetric and transitive relation satisfying thePriestley
separation axiom:

If x, y ∈ X are such thatx 6≤ y, then there exists a clopen downsetU
with y ∈ U andx /∈ U .

We denote byPS the category of Priestley spaces and order-preserving continuous
maps. It is well known that every distributive latticeD can be represented as a lattice
of all clopen downsets of the Priestley space of its prime filters. Given a Priestley space
X , letVr(X) be a subspace ofV (X) of all closed rooted subsets ofX . The same proof
as forV (X) shows thatVr(X) is a Stone space.

Lemma 6.1. LetX be a Priestley space. Then

1. (V (X),⊆) is a Priestley space.
2. (Vr(X),⊆) is a Priestley space.



Proof. (1) As we mentioned aboveV (X) is a Stone space. LetF, F ′ ∈ V (X) and
F 6⊆ F ′. Then there existsx ∈ F such thatx /∈ F ′. Since every compact Hausdorff
space is normal, there exists a clopen setU such thatF ′ ⊆ U and x /∈ U . Thus,
F ′ ∈ �U andF /∈ �U . All we need to observe now is that for each clopenU of X ,
the set�U is a clopen downset ofV (X). But this is obvious.

(2) the proof is the same as for (1). ⊓⊔

Let (X,≤) and(X ′,≤′) be Priestley spaces andf : X → X ′ a continuous order-
preserving map. Then it is easy to check thatV (f) = f [ ] is a continuous order-
preserving map between(V (X),⊆) and(V (X ′),⊆), andVr(f) = f [ ] is a continuous
order-preserving map between(Vr(X),⊆) and (Vr(X

′),⊆). Thus,V andVr define
functors on the category of Priestley spaces.

Definition 6.2. (Celani and Jansana [10]) A weak Heyting space is a triple(X,≤, R)
such that(X,≤) is a Priestley space andR is a binary relation onX satisfying the
following conditions:

1. R(x) = {y ∈ X : xRy} is a closed set, for eachx ∈ X .
2. For eachx, y, z ∈ X if x ≤ y andxRz, thenyRz.
3. For each clopen setU ⊆ X the sets[R](U) = {x ∈ X : R(x) ⊆ U} and
〈R〉(U) = {x ∈ U : R(x) ∩ U 6= ∅} are clopen.

Let (X,≤, R) and(X ′,≤′, R′) be two weak Heyting spaces. We say thatf : X →
X ′ is a weak Heyting morphism iff is continuous,≤-preserving andR-bounded mor-
phism (i.e., for eachx ∈ X we havefR(x) = R′f(x)). Then the category of weak
Heyting algebras is dually equivalent to the category of weak Heyting spaces and weak
Heyting morphisms [10]. We will quickly recall how the dual functors are defined on
objects. Given a weak Heyting algebra(A,→) we take a Priestley dualXA of A and
defineRA onXA by setting: for eachx, y ∈ XA, xRAy if for eacha, b ∈ A, a→ b ∈ x
andb ∈ x imply b ∈ y. Conversely, if(X,≤, R) is a weak Heyting space, then we take
the distributive lattice of all clopen downsets ofX and for clopen downsetsU, V ⊆ X
we defineU → V = {x ∈ X : R(x) ∩ U ⊆ V }.

Remark 6.3.In fact, [10] works with clopen upsets instead of downsets and the inverse
of the relationR. We chose working with downsets to be consistent with the previous
parts of the paper.

Theorem 6.4. The category of weak Heyting spaces is isomorphic to the category of
Vietoris coalgebras on the category of Priestley spaces.

Proof. Given a weak Heyting space(X,≤, R). We consider a coalgebra(X, R(.) :
X → V (X)). The mapR(.) is well defined by Definition 6.2(1). It is order-preserving
by Definition 6.2(2) and is continuous by Definition 6.2(3). Thus,(X, R(.) : X →
V (X)) is aV -coalgebra. Conversely, let(X, α : X → V (X)) be aV -coalgebra. Then
(X, Rα), wherexRαy iff y ∈ α(x), is a weak Heyting space. Indeed,R being well de-
fined and order-preserving imply conditions (1) and (2) of Definition 6.2, respectively.
Finally,α being continuous implies condition (3) of Definition 6.2. That this correspon-
dence can be lifted to the isomorphism of categories is easy to check. ⊓⊔



We say that a weakly Heyting space(X,≤, R) is pre-Heyting spaceif for each
x ∈ X the setR(x) is rooted.

Theorem 6.5.

1. The category of pre-Heyting algebras is dually equivalent to the category of pre-
Heyting spaces.

2. The category of pre-Heyting spaces is isomorphic to the category ofVr-coalgebras
on the category of Priestley spaces.

Proof. (1) By the duality of weak Heyting algebras and weak Heyting spaces it is suffi-
cient to show that a weak Heyting algebra satisfies conditions (5)-(6) of Definition 4.1
iff R(x) is rooted. We will show that, as in Theorem 4.2, the axiom (5) is equiva-
lent to R(x) 6= ∅, for eachx ∈ X , while axiom (6) is equivalent toR(x) having
a unique maximal element. Assume a weak Heyting space(X,≤, R) validates axiom
(5). Then in the weak Heyting algebra of all clopen downsets of X we haveX → ∅ = ∅.
Thus for eachx ∈ X we haveR(x) ⊆ ∅ iff x ∈ ∅. Thus, for eachx ∈ X we have
R(x) 6= ∅. Now suppose for each clopen downsetsU, V ⊆ X the following holds
X → (U ∪ V ) ⊆ (X → U) ∪ (X → V ). Then we have thatR(x) ⊆ U ∪ V implies
R(x) ⊆ U or R(x) ⊆ V . SinceR(x) is closed andX is a Priestley space, we have that
every point ofR(x) is below some maximal point ofR(x). We assume that there ex-
ists more than one maximal point ofR(x). Then the same argument as in [4, Theorem
2.7(a)] shows that there are clopen downsetsU andV such thatR(x) ⊆ U ∪ V , but
R(x) 6⊆ U , R(x) 6⊆ V . This is a contradiction, soR(x) is rooted, On the other hand,
it is easy to check that ifR(x) is rooted for eachx ∈ X , then (5)-(6) are valid. Finally,
a routine check shows that this correspondence can be liftedto an isomorphism of the
categories of pre-Heyting algebras and pre-Heyting spaces.

(2) The proof is similar to the proof of Theorem 6.4. The extracondition on pre-
Heyting spaces obviously implies that a mapR(.) : X → Vr(X) is well defined and
conversely(X, α : X → Vr(X)) being a coalgebra implies thatRα(x) is rooted for
eachx ∈ X . The rest of the proof is a routine check. ⊓⊔

Thus, we obtained a coalgebraic semantics/representationof weak and pre-Heyting
algebras.

7 Conclusions and future work

In this paper we described finitely generated free (weak, pre) Heyting algebras using an
initial algebra-like construction. The main idea is to split the axiomatization of Heyting
algebras into its rank 1 and non-rank 1 parts. The rank 1 approximants of Heyting alge-
bras are weak and pre-Heyting algebras. For weak and pre-Heyting algebras we applied
the standard initial algebra construction and then adjusted it for Heyting algebras. We
used Birkhoff duality for finite distributive lattices and finite posets to obtain the dual
characterization of the finite posets that approximate the duals of free algebras. As a
result we obtained Ghilardi’s representation of these posets in a more systematic and
transparent way. For weak and pre-Heyting algebras we also introduced a neat coalge-
braic representation.



There are a few possible directions for further research. Aswe mentioned in the in-
troduction, although we considered Heyting algebras (intuitionistic logic), this method
could be applied to other non-classical logics. More precisely, the method is available
if a signature of the algebras for this logic can be obtained by adding an extra operator
to a locally finite variety. Thus, various non-rank 1 modal logics such asS4, K4 and
other more complicated modal logics, as well as distributive modal logics, are the ob-
vious candidates. On the other hand, one cannot always expect to have such a simple
representation of free algebras. The algebras corresponding to other many-valued logics
such asMV -algebras,l-groups,BCK-algebras and so on, are other examples where
this method could lead to interesting representations. Therecent work [8] that connects
ontologies with free distributive algebras with operatorsshows that such representations
of free algebras are not only interesting from a theoreticalpoint of view, but could have
very concrete applications.

AcknowledgementsThe first listed author is grateful to Mamuka Jibladze and Dito
Pataraia for many interesting discussions on the subject ofthe paper.

References

1. S. Abramsky. A Cook’s tour of the finitary non-well-founded sets. In S. A. et al., editor,We
Will Show Them: Essays in honour of Dov Gabbay, pages 1–18. College Publications, 2005.
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18. A. Kurz and J. Rosický. The Goldblatt-Thomason theoremfor coalgebras. InCALCO 2007,
volume 4624 ofLNCS, pages 342–355. Springer-Verlag, 2007.

19. A. Nerode. Some Stone spaces and recursion theory.Duke Math. J., 26:397–406, 1959.
20. A. Palmigiano. A coalgebraic view on positive modal logic. Theoretical Computer Sceince,

327:175–195, 2004.
21. D. Pataraia. High order cylindric algebras. 2010. In preparation.
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