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Finitely generated free Heyting algebras
via Birkhoff duality and coalgebra

N. Bezhanishvili* M. Gehrké&**

! Department of Computing, Imperial College London, Unitéddtiom
2 IMAPP, Radbout Universiteit Nijmegen, the Netherlands

Abstract. Algebras axiomatized entirely by rank 1 axioms are algelfvas
functor and thus the free algebras can be obtained by a diimétprocess. Du-
ally, the final coalgebras can be obtained by an inverse pnoitess. In order to
explore the limits of this method we look at Heyting algebrdsch have mixed
rank 0-1 axiomatizations. We will see that Heyting algelass special in that
they are almost rank 1 axiomatized and can be handled byta shgiant of the
rank 1 coalgebraic methods.

1 Introduction

Coalgebraic methods and techniques are becoming incghasgimportant in investigat-
ing non-classical logics [24]. In particular, logics axiatized by rank 1 axioms allow
coalgebraic representation as coalgebras for a functeRBl7We recall that an equa-
tion is of rank 1 for an operatiofiif each variable occurring in the equation is under the
scope of exactly one occurrence fofAs a result the algebras for these logics become
algebras for a functor over the category of underlying algelwithout the operatiofi.
Consequently, free algebras are initial algebras in thegeay of algebras for this func-
tor. This correspondence immediately gives a construdsgeription of free algebras
forrank 1 logics [13, 1, 7]. Examples of rank 1 logics are thsib modal logid<, basic
positive modal logic, graded modal logic, probabilisticaablogic, coalition logic and
so on [23]. For a coalgebraic approach to the complexity ok ralogics we refer to
[23]. On the other hand, rank 1 axioms are too simple—veryvi@i-known logics
are axiomatized by rank 1 axioms. Therefore, one would wamixtend the existing
coalgebraic techniques to non-rank 1 logics. However, Bawe from [18], algebras
for these logics cannot be represented as algebras for tofuared we cannot use the
standard construction of free algebras in a straightfadwaay.

This paper is an extended version of [6]. However, unlike [igfe we give a complete
solution to the problem of describing finitely generate@fréeyting algebras in a sys-
tematic way using methods similar to those used for rank t$o0d his paper together
with [6] and [7] is a facet of a larger joint project with Alesder Kurz on coalgebraic
treatment of modal logics beyond rank 1. We recall that araggu is of rank 0-1 for
an operatiory if each variable occurring in the equation is under the saf@# most
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one occurrence of. With the ultimate goal of generalizing a method of conding:
free algebras for varieties axiomatized by rank 1 axiombéacase of rank 0-1 axioms,
we consider the case of Heyting algebras (intuitionistggdpwhich is of rank 0-1 for
f =—). In particular, we construct free Heyting algebras. Foegtension of coalge-
braic techniques to deal with the finite model property of-namnk 1 logics we refer to
[22].

Free Heyting algebras have been the subject of intensiesiigation for decades. The
one-generated free Heyting algebra was constructed byeRestd Nishimura in the
50s. In the 70s Urquhart gave an algebraic characterizafidinitely generated free
Heyting algebras. A very detailed description of finitelyngeated free Heyting alge-
bras in terms of their dual spaces was obtained in the 80s igpli&y, Shehtman, Bel-
lissima and Rybakov. This method is based on a descriptitireqfoints of finite depth
of the dual frame of the free Heyting algebra. For the detdithis construction we re-
ferto [11, Section 8.7] and [5, Section 3.2] and the refeesriberein. Finally, Ghilardi
[12] introduced a different method for describing free Hiegtalgebras. His technique
builds the free Heyting algebra on a distributive latticepsby step by freely adding
to the original lattice the implications of degreefor eachn € w. Ghilardi [12] used
this technique to show that every finitely generated freetidgyalgebra is a bi-Heyting
algebra. A more detailed account of Ghilardi’s construtiian be found in [9] and
[14]. Ghilardi and Zawadowski [14], based on this methodjwea model-theoretic
proof of Pitts’ uniform interpolation theorem. In [3] a silai construction is used to
describe free linear Heyting algebras over a finite distieuattice and [21] uses the
same method to construct high order cylindric Heyting atgeb

Our contribution is to derive Ghilardi’s representatiorinitely generated free Heyting
algebras in a simple, transparent, and modular way whichsedentirely on the ideas
of the coalgebraic approach to rank 1 logics, though it usesetideas in a non-standard
way. We split the process into two parts. We first apply thiéghalgebra construction to
weak and pre Heyting algebras—these are consecutive rgmrixdmants of Heyting
algebras. We then use a non-standard colimit system bashe sequence of algebras
for building free pre-Heyting algebras in the standard geltaic framework.

On the negative side, we use some properties particular ytirigealgebras, and thus
our work does not yield a method that applies in general. Nlegkess, we expect that
the approach, though it would have to be tailored, is likel\pé successful in other
instances as well. Obtained results allow us to derive agebahic representation for
weak and pre Heyting algebras and sheds new light on the pegya nature of Heyt-

ing algebras.

The paper is organized as follows. In Section 2 we recall theatdled Birkhoff (dis-
crete) duality for distributive lattices. We use this dtaiin Section 3 to build free weak
Heyting algebras and in Section 4 to build free pre-Heytigglaras. Obtained results
are applied in Section 5 for describing free Heyting algebha Section 6 we give a
coalgebraic representation for weak and pre-Heyting agetWe conclude the paper
by listing some future work.



2 Discrete duality for distributive lattices

We recall that a non-zero elemenof a distributive latticeD is calledjoin-irreducible
if for everyb, ¢ € D we have that < bV cimpliesa < bora < c. For each distributive
lattice (DL for short)D let J(D) denote the set of all join-irreducible elementsiaf
Let also< be the restriction of the order db to J(D). Then(J(D), <) is a poset.
Recall also that for every posét a subset/ C X is called adownsetf € U and
y < ximply y € U. For each posekX we denote byO(X) the distributive lattice
(O(X),N,u, 0, X) of all downsets ofX. Then every finite distributive lattic® is
isomorphic to the lattice of all downsets ©f(D), <) and vice versa, every posktis
isomorphic to the poset of join-irreducible elementsfX). We call (J(D), <) the
dual poseof D and we callO(X) thedual latticeof X .

This duality can be extended to the duality of the catedohy,, of finite bounded
distributive lattices and bounded lattice morphisms amddategoryPosg,, of finite
posets and order-preserving maps. In fact, if D — D’ is a bounded lattice mor-
phism, then the restriction éf, the lower adjoint o, to J(D’) is an order-preserving
map betweerf.J(D'), <') and(J(D), <), and if f : X — X' is an order-preserving
map between two posef§ and X/, thenf! : O(X) — O(X'), S — [f(S)is V-
preserving and its upper adjoiff!)? = f~! : O(X’) — O(X) is a bounded lattice
morphism. Moreover, injective bounded lattice morphisires Embeddings or, equiv-
alently, regular monomorphisms) correspond to surjeaiieker-preserving maps, and
surjective lattice morphisms (homomorphic images) cquesl to order embeddings
(order-preserving and order-reflecting injective mapa) ére in one-to-one correspon-
dence with subposets of the corresponding poset.

We also recall that an elememta # 1, of a distributive latticeD is calledmeet-
irreducibleif for every b, ¢ € D we have thab A ¢ < a impliesb < a or ¢ < a. We let
M (D) denote the set of all meet-irreducible element®of

Proposition 2.1. Let D be a finite distributive lattice. Then for eaghe J(D), there
existsk(p) € M (D) such thap ¢ x(p) and for eachu € D we have

p<a or a<k(p).

Proof. Forp € J(D), letk(p) = VV{a € D | p £ a}. Then it is clear that the
condition involving alla € D holds. Note that ifp < x(p) = \/{a € D | p £ a},
then, applying the join-irreducibility of, we geta € D with p £ a butp < a, which
is clearly a contradiction. So it is true thatZ (p). Now we show thatk(p) is meet
irreducible. First note that singss not belows(p), the latter cannot be equaltoAlso,
if a,b £ k(p) thenp < a,b and therefore < a A b. Thus it follows thatz A b £ x(p).
This concludes the proof of the proposition. a

Proposition 2.2. Let X be a finite set and’p 1, (X) the free distributive lattice ovek.
Then the posdt/(Fpr (X)), <) of join-irreducible elements dfp 1, (X) is isomorphic
to (P(X), D), whereP(X) is the power set ok and each subset C X corresponds
to the conjunction\ S € Fpr(X). Moreover, forx € X andS C X we have

AS <ziffz € S.



Proof. This is equivalent to the disjunctive normal form repreaéonh for elements of
FDL (X) O

3 Weak Heyting algebras

3.1 Freely adding weak implications

Definition 3.1. [10] A pair (A, —) is called aweak Heyting algebraf A is a bounded
distributive lattice and—: A? — A a weak implication that is, a binary operation
satisfying the following axioms for all b, ¢ € A:

Q) a—a=1,

2 a—(bAc)=(a—=Db)A(a—c).

) (avd) —mc=(a—c)A(b—c).

4) (a—=b)Ab—c)<a—c

It is easy to see that by (2) weak implication is order-préserin the second co-
ordinate and by (4) order-reversing in the first. The follegviemma yields a useful
equational property of wHAs.

Lemma 3.2. Let (A, —) be a wHA. For eacla, b € A we have
a—b=a— (aADb).

Proof. By (2) we haves — (aAb) = (a — a)A(a — b) and by (1) we have — a =1
so we obtairt — b =a — (a A b). O

Let D and D’ be distributive lattices. We let> (D x D’) denote the sefa —
b:a € Dandb € D'}. We stress that this is just a set bijective withx D’. The
implication symbol is just a formal notation. For each disitive lattice D we also let
Fpr(— (D x D)) denote the free distributive lattice oves (D x D). Moreover, we
. H(D) = Fou(— (D x D))/~
where= is the DL congruence generated by the axioms (1)—(4). We toasttess that
we are not thinking of the axioms as a basis for an equatitwealt/ for a binary oper-
ation — here. The point of view is that of describing a bounded distive lattice by
generators and relations. That is, we want to find the quibtietine free bounded dis-
tributive lattice over the set> (D x D) with respect to the lattice congruence generated
by the pairs of elements dfp;,(— (D x D)) in (1)—(4) witha, b, c ranging overD.
Foran element — b € Fpr(— (D x D)) we denote bya — b~ the~ equivalence
class ofa — .

The rest of the section will be devoted to showing that fohefamite distributive
lattice D the posetJ(H (D)), <) is isomorphic to(P(J(D)), C). Below we give a
dual proof of this fact. The dual proof, which relies on thetfthat identifying two
elements of an algebra simply corresponds to throwing @selpoints of the dual that
are below one and not the other, is produced in a simple, rmgdarid systematic way
that doesn’t require any prior insight into the structuréhefse particular algebras.

% In [10] weak Heyting algebras are called ‘weakly Heytingefitps'.



We start with a finite distributive lattic® and the free DL generated by the set

— (DxD)={a—bl|abe D}
of all formal arrows oveD. As follows from Proposition 2.2](Fpr(— (D x D))) is
isomorphic to the power set ek (D x D), ordered by reverse inclusion. Each subset
of — (D x D) corresponds to the conjunction of the elements in that $utheeempty
set of course correspondstoNow we want to take quotients of this free distributive
lattice wrt various lattice congruences, namely the onesgded by the set of instances
of the axioms of weak Heyting algebras.
The axiomz — z = 1.

Here we want to take the quotient & (— (D x D)) with respect to the lattice
congruence offpr,(— (D x D)) generated by the s€t(la — a,1) | a € D}.
By duality this quotient is given dually by theubset call it P;, of our initial poset
Py = J(Fpr(— (D xD))), consisting of those join-irreducibles 8%, ;, ( — (D x D))
that do not violate this axiom. Thus, f&t € J(Fpr(— (D x D))), S is admissible
provided

VaeD (A\S<1 = NAS<a—a).

Since all join-irreducibles are less than or equalltdt follows that the only join-
irreducibles that are admissible are the ones that are helewa for all ¢ € D. That
is, viewed as subsets ef (D x D), only the ones that contain— « for eacha € D:

P ={S€Py|a—ac Sforeacha € D}.

The axiomz — (yAz) = (x = y) A (z — 2).

We now want to take a further quotient and thus we want to kedy those join-
irreducibles fromP; that do not violate this second axiom. Thatdsc P; is admissible
provided

Ya,b,c (/\Sga—>(b/\c) — /\Sga—>b and /\Sga—>c).
which means
Ya,b,c (a—(bAc)eS <<= a—beSanda—celd).

Proposition 3.3. The posetP, of admissible join-irreducibles at this stage is order
isomorphic to the set

Q:={f:D—D|VYaeD f(a)<a}
ordered pointwise.

Proof. An admissibleS from P, corresponds to the functiofy : D — D given by

fs(a)= N\{peD|a—be S}



In the reverse direction a function i®, corresponds to the admissible set
Sy={a—1b]f(a) <b}.

The proof that this establishes an order isomorphism isaggétiforward verification.
O

The axiom (zVy) — z = (x — 2) A (y — 2).
We want the subposet @, consisting of thos¢g’s such that

Ya,b,c ((avb) - ceSy <= a—ceSyandb— ceSy).
To this end notice that

Ya,b,c ((avb) —ce Sy < (a—ceSyandb—ce Sy))
< Va,b,c (flavb)<c <= (f(a)<c and f(b) <c))
< Va,b flavbd) = f(a)V f(b).

That is, the poset’s;, of admissible join-irreducibles left at this stage is isophic to
the set

Qs={f:D— D] f isjoin-preservingand/a € D f(a) < a}.

The axiom (z — y) A (y — 2) <z — z.
It is not hard to see that this yields, in terms of join-presey functionsf : D — D,
Qi={f€Qs|VaeD f(a) < f(f(a))}

={f:D — D| fisjoin-preservingantfa € D f(a) < f(f(a))
={f:D — D| fisjoin-preservingantfa € D f(f(a)) = f(a)

< f(a) <a}
< a}.

We note that the elements ¢f, are nuclei [15] on the order-dual lattice 6f. Since
the f’s in Q4 are join and) preserving, they are completely given by their action on
J(D). The additional property shows that these functions hagedfifixpoints. In fact,
we can show that they are completely described by theirijo@nucible fixpoints.

Lemma 3.4. Let f € Q4, then for eaclu € D we have

fla)=\/{re J(D)| f(r) =r < a}.

Proof. Clearly \/{r € J(D) | f(r) = r < a} < f(a). For the converse, let be
maximal inJJ (D) wrt the property that < f(a). Now it follows that

r < fla) = f(f(a) = \/{f(@) | /(D) 3 q < f(a)}.

Sincer is join-irreducible, there ig € J(D) with ¢ < f(a) andr < f(q). Thus
r < f(¢) < ¢ < f(a) and by maximality of- we conclude thag = ». Nowr < f(q)



andq = ryieldsr < f(r). However,f(r) < r as this holds for any element @
and thusf(r) = r. Since any element in a finite lattice is the join of the maxima
join-irreducibles below it, we obtain

fla) = \/{r € J(D) | ris maximal in.J (D) wrtr < f(a)}
<\/{reJD)| fr)=r<fl@)} < f(a).

Finally, notice that iff(r) = r < f(a) then asf(a) < a, we havef(r) = r < a.
Conversely, iff (r) = r < athenr = f(r) = f(f(r)) < f(a) and we have proved the
lemma. O

Proposition 3.5. The set of functions i), ordered pointwise, is order isomorphic to
the powerset of (D) in the usual inclusion order.

Proof. The order isomorphism is given by the following one-to-onaespondence

Qs S PJ(D))
f = {peJ(D)|fp) =rp}
fr «— T

where fr : D — D is given by fr(a) = \/{p € J(D) | T 5 p < a}. Using the
lemma, it is straightforward to see that these two assigmsrae inverse to each other.
Checking thatfr is join preserving and satisfig€ = f < idp is also straightforward.
Finally, it is clear thatf; < fsifandonlyifT' C S. a

Theorem 3.6. Let D be a finite distributive lattice and” = (J(D), <) its dual poset.
Then

1. The posetJ(H (D)), <) is isomorphic to the poséP (X ), C) of all subsets oX
ordered by inclusion.

2. J(H(D)) = {[Ayer(a — k(@)= | T C J(D)}, (wherer(q) is the element
defined in Proposition 2)1

Proof. As shown above, the posét H (D)), obtained fromJ(Fp(—(D x D))) by
removing the elements that violate the congruence schelieg@], is isomorphic to the
posetQ)., and@), is in turn isomorphic t&”(J (D)) ordered by inclusion, see Proposi-
tion 3.5.

In order to prove the second statement,glet J(D), and conside — r(q) €
Fpr(— (D x D)).Ifwe representi (D) as the lattice of downse€3(J(H (D))), then
the action of the quotient map on this element is given by

FDL(—> (D x D)) — H(D)
q— k(q) — {T" e P(J(D)) | ¢ — k(q) € St}

Now



q— k(q) € S <= fr(q) < k(q)
—= \/lgnT") < k(g)
== qdgT.

The last equivalence follows from the fact tha x(q) if and only if ¢ £ a and the
only element of| ¢ that violates this ig itself. We now can see that for afiyC J(D)
we have

Fpr(— (Dx D)) — H(D)
[N@—s@)~ — {T'eP(D)|Vq (¢¢T = q— r(q) € S}

q¢T
={T"eP(J(D)) Ve (¢T = q¢T'}
={T"eP(J(D))|VYq (qeT = qeT}
={T"eP(J(D)) | T CT}.
Thatis, under the quotientmdiy . (— (D x D)) — H(D), the elementg\ ., (q

x(q)) are mapped to the principal downs¢ts, for eachT € P(J(D)) = J( (D)).
Since these principal downsets are exactly the join-ircédes of O(J(H(D)))
H(D), we have tha{ [\, 4r(q — #(q))]~ | T C J(D)} = J(H(D)).

Next we will prove a useful technical lemma that will be apdlioften throughout
the remainder of the paper. L& be a finite distributive lattice. Fag, b € D and
T C J(D)wewriteT <a—bif ASr <a—bin H(D), whereSy = Sy, = {a —
b: fr(a) < b}.

Lemma 3.7. Let D be a finite distributive lattice. For eadhb € D,a — b € H(D)
andT C J(D) we have

on=l

T<a—b iff VpeT(p<aimpliesp <b)
Proof.

T<a—b<+< \Sr<a—b
&= qg—be St
<~ fr(a)<b
= \/(lanT)<b
< VpeT (p<aimpliesp <b).

a

It follows from Theorem 3.6(1) that if two finite distributnMatticesD and D’ have
an equal number of join-irreducible elements, théD) is isomorphic toH (D’).
To see this, we note that j7(D)| = |J(D')|, then(P(J(D)), C) is isomorphic to



(P(J(D")),C). This, by Theorem 3.6(1), implies th&k(D) is isomorphic toH (D’).
In particular, any two non-equivalent orders on any finite giee rise to two non-
isomorphic distributive lattices with isomorphi¢-images.

Remark 3.8.All the results in this section for finite distributive latés can be gener-
alized to the infinite case. In the infinite case instead ofdipbsets we would need to
work with Priestley spaces and instead of the finite powevseteed to work with the
Vietoris space (see Section 6). Since for our purposes fiistebutive lattices suffice,
for now, we will stick with the finite case.

3.2 Free weak Heyting algebras

In the coalgebraic approach to generating the free algéhsaa fact of central impor-
tance thatd as described here is actually a functor. That is, for a DL homghism
h : D — FE one can define a DL homomorphisth(h) : H(D) — H(FE) so thatH
becomes a functor on the category of DLs. To see this, we adg mo note that! is
defined by rank 1 axioms. We recall that for an opergtdin our casef is the weak
implication —) an equation is ofank 1if each variable in the equation is under the
scope of exactly one occurrence pfand an equation is afank 0-1if each variable
in the equation is under the scope of at most one occurrengelofs easy to check
that axioms (1)-(4) for weak Heyting algebras are rank 1.r&twee, H gives rise to a
functor H : DL — DL [2, 18]. Moreover, the category of weak Heyting algebras is
isomorphic to the categorig(H) of the algebras for the functdf. For the details of
such correspondences we refer to [2,1,13, 7, 18]. We woksddi give a concrete de-
scription of howH applies to DL homomorphisms. We describe this in algebeaims
here and give the dual construction via Birkhoff duality.

Leth : D — E be a DL homomorphism. Recall that the dual map fré(¥)
to J(D) is just the lower adjoink’ with domain and codomain properly restricted.
By abuse of notation we will just denote this map b3, leaving it to the reader
to decide what the proper domain and codomain is. N6GD) = Fpr(— (D x
D))/<Axz(D)>, where<Axz(D)> is the DL congruence generated By:(D) and
Az(D) is the set of all instances of the axioms (1)-(4) withh, c € D. Also letgp be
the quotient map corresponding to mod'ing outbylaz:(D)>. The maph : D — E
yieldsamaph x h : D x D — FE x F and this of course yields a lattice homo-
morphismFpr(h x h) : Fpr(— (D x D)) — Fpr(— (E x E)). Now the point
is thatFpr (h x h) carries elements olz(D) to elements ofdz(E) and thus in par-
ticular to elements ok Az(E)> (it is an easy verification and only requirego be
a homomorphism for axiom schemes (2) and (3)). This is etprivdo saying that
Az(D) C Ker(gg o Fpr(h x h)) and thus<Az(D)> C Ker(qg o Fpr(h x h)),
or equivalently that there is a unique maf{h) : H(D) — H(F) that makes the
following diagram commute

FDL(hXh)

FDL(_) (DXD)) FDL(_) (EXE))



The dual diagram is

PDx D) <N ppxE)
PUD) <" pliie))

The mapep : P(D) — P(D x D) is the embedding, vi§), and so on intd?, as
obtained above. Thatisp(T) = {a — b | Vp € T (p < a = p < b}. Now in this dual
setting, the fact that there is a m&gh°) is equivalent to the fact thdh x k)~ o ep
maps into the image of the embedding. This is easily verified:

(hx h) Yeg(T))={a—b|VgeT(q<h(a)=q<h(®)}
—={a—b|VgeT (h'(q) <a= h’(g) < b}
={a—b|Vpeh(T)(p<a=p<b}

en(h’(T)).

Thus we can read off directly what the m&gh’) is: it is just forward image under
h°. That is, if we call the dual ok : D — F by the namef : J(E) — J(D), then
P(f) = f[] wheref]]is the lifted forward image mapping subsets/gf) to subsets
of J(D). Finally, we note thafP satisfiesP(f) is an embedding if and only if is
injective, andP( f) is surjective if and only iff is surjective.

Remark 3.9.It follows from Theorem 3.6(1) that the functéf can be represented as a
composition of two functors. LeB : DLg,, — BAg, be the functor from the category
of finite distributive lattices to the category of finite Beah algebras which maps every
finite distributive lattice to its free Boolean extensioriet(unique) Boolean algebra
generated by this distributive lattice. It is well known [1Bat the dual of the functor
B is the forgetful functor from the category of finite posetstie category of finite sets
which maps every finite poset to its underlying set. FurtleralsoHg : BAg, —
DLg, be the functot restricted to Boolean algebras. That is, given a Booleagbaily
A we defineHp(A) as the free DL over» (B, B) modded out by the axioms (1)-(4)
of wHAs. Then the functor which is dual t§z maps each finite set to (P(X), Q)
and therefordd : DLg,, — DLg, is the composition oB with Hp.

Since weak Heyting algebras are the algebras for the fud€tave can make use
of coalgebraic methods for constructing free weak Heytigglaras. Similarly to [7],
where free modal algebras and free distributive modal agetvere constructed, we
construct finitely generated free weak Heyting algebrasitiglialgebras ofdlg(H ).
Thatis, we have a sequence of bounded distributive lattéaeh embedded in the next:

n — Fpr(n), the free bounded distributive lattice @argenerators

D() = FDL (n)

Dyy1 = Do+ H(Dy), where+ is the coproduct iDL

io : Do — Do+ H(Dy) = D, the embedding given by coproduct

ig : Dy — D1 Wherei, = idp, + H(’ik_l)



Fora,b € Dy, we denote bys —, b the equivalence claga — bl € H(Dy) C
Dy.+1. Now, by applying the technique of [2], [1], [13], [7] to we&leyting algebras,
we arrive at the following theorem.

Theorem 3.10. The direct limit(D,,, (Dx, — D.)x) in DL of the systen{Dy, iy, :
Dy, — Dy41), with the binary operation-,,: D, x D,, — D,, defined byy —,, b =

a —y b, fora,b € Dy, is the freen-generated weak Heyting algebra when we embed
in D, vian — Do — D,,.

Now we will look at the dual of D,,, —,,). Let Xy = P(n) be the dual oD, and let
Xit1 = Xo x P(Xk)
be the dual 0Dy 1.

Theorem 3.11. The sequenceXy ) k<., With mapsry, : Xo x P(Xy) — X} defined by
7 = idx, X P(mg—1) i.€. mp(x, A) = (2, 7p—1[4])

is dual to the sequend®y, )<, With mapsiy : D — Dg41. In particular, thery's
are surjective.

Proof. The dual ofDy is Xy = P(n), and sinceDy.+; = Dy + H(Dy,), it follows that
Xik+1 = Xo x P(X) as sums go to products and Hsis dual toP. For the maps,
o+ Xo X P(Xo) — X is just the projection onto the first coordinate sirgés the
injection given by the sum construction. We note thatis surjective. Now the dual
Tt Xgpy1 = Xo X P(Xk) — X = Xp X 'P(kal) of ip, = ’L'dD0 + H(’L'kfl) is
idx, x P(mr—1) which is exactly the map given in the statement of the theoiote
thata map of the fornrX x Y — X x Z given by(z,y) — (z, f(y)) wheref : Y — Z
is surjective if and only the map is. Also, as we saw abov@(ry) is surjective if and
only if 7, is. Thus by induction, all the;’s are surjective. a

4 Pre-Heyting algebras

In this section we define pre-Heyting algebras which formtavatiety of weak Heyting
algebras and describe free pre-Heyting algebras. We fitsetthat, for any weak Heyt-
ing algebraA, the mapA — A given bya — (1 — a) is meet-preserving and also
preserved by virtue of the first two axioms of weak Heyting algebras. Far same
reason, the map from a distributive lattifeto H (D) mapping each elementof D to

1 — a also is meet-preserving and preservebor Heyting algebras more is true: the
mapH — H given bya — (1 — a) is just the identity map and thus, in particular,
it is a lattice homomorphism. In other words, Heyting algebsatisfy additional rank
1 axioms beyond those of weak Heyting algebras.

Definition 4.1. A weak Heyting algebréA, —) is called apre-Heyting algebraPHA
for short, if the following additional axioms are satisfied &ll a,b € A:

B5)1—-0=0,



6)(1l=a)v(l—=0b)=1—(aVD).

Since these are again rank 1 axioms, we can obtain a deeaorigtthe free finitely
generated pre-Heyting algebras using the same method agé&k Heyting algebras.
Accordingly, for a finite distributive latticé, similarly to what we did in the previous
section, we let

K(D) = Fpr(— (D x D))/~

where~ is the DL congruence generated by the axioms (1)—(6) vievgectlational
schemas. This of course means we can just proceed from wiededtwff in Section 3
and identify the further quotient o7 (D) obtained by the schem@a — a) v (1 —
b) ~ 1 — (a V b) for a andb ranging over the elements &f and1l — 0 ~ 0. That is,
we need to calculate

K(D) = H(D)/~

where=: is the DL congruence generated by the relation schema givemxibms (5)-
(6).

We say that a subsét of a poset( X, <) is rootedif there existgp € S such that
q < p for eachqg € S. Note that it follows from the definition that a rooted subiset
necessarily non-empty. We denoteBy( X) the set of all rooted subsets &f.

Theorem 4.2. Let D be a finite distributive lattice and = (J(D), <) its dual poset.
Then

1. The posetJ(K (D)), <) is isomorphic to the poséP,. (X ), C) of all rooted sub-
sets ofX ordered by inclusion.

2. J(K(D)) ={[1 = 2) A (N <y ggr (@ = K@)~ | T" C |z \ {z},z € X}

3. The mapD — K(D) given bya — (1 — a) is an injective bounded lattice
homomorphism whose dual is the surjective order-presgmwiaproot : P,.(X) —
X sending each rooted subsetX¥fto its root.

Proof. (1) By Theorem 3.6(1)(J(H (D)), <) is isomorphic to(P(X), C). Thus, we
need to show that the rooted subsetsXoére exactly the subsets which are admissible
with respect to axioms (5) and (6). For the axiom (5), it maywmeth clarifying the
meaning of this axiom: the (and1) on the left side are elements B¥, and the expres-
sion1 — 0 is one of the generators &f (D), whereas thé on the right of the equality

is the bottom of the bounded latti¢eé(D) — we will denote it by0 ) for now. An

S C X is admissible for (5) provided

Now by Lemma 3.75 <1 — Oifand only if, forallp € S, p < 1 impliesp < 0.
Since the former is true for evepye X and the latter is false for all € X, the only
S € P(X) satisfying this condition is§ = (). On the other hand, as in any lattice, no
join-irreducible inK (D) is below0 g py. Thus (5) eliminates’ = ().

Weak Heyting implication is meet-preserving and thus ofateserving in the sec-
ond coordinate so that we have that> (aVbd) > (1 — a) V(1 — b) already inH (D)



for everyD. Therefore, a sef C X is admissible with respect to (5) and (6) ff#£ (
and

S<1—(aVvb) implesS<1—aorS<1-—b

Now by Lemma 3.75 <1 — ziff S C |z, so for non-emptys we needS C |(aV b)
to imply thatS C |aor S C |[bforall a,b € D. This is easily seen to be equivalent
to rootedness: I6 C X is rooted with roop. ThenS C [(a V b) impliesp < a Vb
and thup < aorp < bsothatS C |aorS C |b. Conversely, ifS is admissible then
S # () and, as it is finite, every element fis below a maximal element &f. If p € S
is maximal but not the maximum of thenS C [(p V a), wherea = \/(S \ {p}), but
S¢Z |pandS & |a.

(2) The proofis similar to to the proof of Theorem 3.6(2). Riéthat for anyl” C X
we have that the join-irreduciblg” € P(X) |7/ C T} = [Tin O(P(X))) = K(D)
is equal to[A zr(¢ — £(g))]~. Also 1 — x is join-irreducible and corresponds to
lz € X. Thatis,

1= la = [\ (g — 5@)]x-
gtz

Thus, in particular, fof” C X rooted with rootc and7” = T'\ {«}, the join-irreducible
corresponding td@’ is given by

(AN@—r@l~ =[(Na—ra)r( N\ (@= 5@

q¢T qfx q<z,q¢T

=[1=2)A( N (2 5@)~

q<z,q¢T’

Since this is the case (D), it is certainly also true in the further quotiefit D) and
in (1) we have shown that all join-irreducibles&f D) correspond to rooted subsets of
X, thus the statement follows.

(3) The mapD — K (D) given bya — (1 — a) is clearly a homomorphism
since we have quotiented out by all the necessary relatipns: 1]~ = 1x(p) by (1),
[1 — 0]~ = Ox(p) by (5), and the map is meet and join preserving by (2) and €6), r
spectively. As we saw in Section 2, the dual of a homomorplhistween finite lattices
is the restriction to join-irreducibles of its lower adjgithat is, our homomorphism is
dual to the map : P.(X) — X given by

VI'e Pr(X)VaeD (r(T)<a <= T<(1-a)).

ForT € P.(X) we havel' < (1 — a) = V,cx ,<,(1 — ) if and only if there is
anz € X withz < a andT < (1 — z). Furthermorel’ < (1 — z) if and only if
T C | zifand only if root(T) < z. Thatis,r(T) < a if and only if root(T) < a
so that, indeed;oot(T') = r(T). Itis clear that the mapoot is surjective and thus the
dual homomorphisnb — K (D) is injective. O

The following technical proposition will be used for obtimig some important re-
sults in the next section of the paper.



Proposition 4.3. Let D be a finite distributive lattice and’ = (J(D), <) its dual
poset. LetS € P.(X) and letx € X. IdentifyingP,(X) with J(K (D)) we have the
following equivalences

root(S) = x

— S<1—-zbutS £1— k(x)

< itisnotthecasethatS <1 —z = S <1 — k(x)).
Proof. We first assume that < 1 — zandS £ 1 — k(z). ThenS C |z and
S & |k(z). It follows that for eachs € S we haves < z and there i € S with
t £ k(x). Therefore, we have < t. Sincet € S, we obtaint = z. Soxz € S. This
implies thatz is the root ofS, which means thatoot(S) = x. Conversely, suppose
root(S) = x. ThenS C |z andxz € S. S0S < 1 — z. On the other hand, we know
thaty £ k(y), for eachy € J(D). Thereforex £ k(z) and thusS € |x(x). This
implies thatS £ 1 — x(z). That (§ < 1 — zandS £ 1 — x(x)) is equivalent to
(tisnotthe casethdtS <1 —z = S <1 — k(z))) is obvious.

Since pre-Heyting algebras are the algebras for the fud€teve can construct free
pre-Heyting algebras from the functéf similarly to how we constructed free weak
Heyting algebras from the functéf in the previous section. Given an order-preserving
mapf : X — X’ between two finite poset¥ and X’ we defineP..(f) : P,(X) —
P-(X') by settingP,.(f) = f[]. Itis easy to see that this is the action of the functor
P, dual to K. Then we will have the analogues of Theorems 3.10 and 3.1frder
pre-Heyting algebras.

We consider the following sequence of bounded distribusitteces:

DO = FDL (n)

Dyt1= Do+ K(Dy),

i0 : Do — Do+ K (Do) = D; the embedding given by coproduct
i Dy — Dk+1 Wherez'k = idDO + K(’L'kfl)

In the same way as for weak Heyting algebras we have the fimipdescription of

free pre-Heyting algebras.

Theorem 4.4. The direct limit(D,,, (Dx, — D,,)r) in DL of the system{Dy, i, :
Dy, — Dy+1)x with the binary operation-,,: D, x D, — D, defined bys —,, b =
a —, b, fora,b € Dy is the freen-generated pre-Heyting algebra.

Let X, be the dual ofDy and let
Xps1 = Xo x Pr(Xp)
be the dual 0Dy 4.
Theorem 4.5. The sequenceX}, )<, With mapsry, : Xo x P.(Xj) — X}, defined by
T = idx, X Pr(mg—1) i.e. mp(z, A) = (2, m—1[A4])

is dual to the sequend®y, ) ;<. With mapsiy : D — Dg41. In particular, thery's
are surjective.

Proof. The proof is analogues to the proof of Theorem 3.11. a



5 Heyting algebras

In this section we will apply the technique of building freeak and pre-Heyting al-
gebras to describe free Heyting algebras. We recall theviialig definition of Heyting
algebras relative to weak Heyting algebras.

Definition 5.1. [15] A weak Heyting algebrd A, —) is called aHeyting algebraHA
for short, if the following two axioms are satisfied for allb € A:

() b<a—b,
(i) an(a—Db)<b.

Let D be a finite distributive lattice. We have seen how to buildftee weak Heyt-
ing algebra and the free pre-Heyting algebra dvéncrementally. LetFy 4 (D) denote
the free HA freely generated by the bounded distributiviickaD. Further letF'}; 4 (D)
denote the elements @ty 4 (D) of —-rank less than or equal. Then eactF}; ,(D)
is a distributive lattice, the bounded lattice reducFaf4 (D) is the direct limit (union)
of the chain

D =Fj,(D) C Fi4(D) C Fii4(D)...

and the implication orFiy 4 (D) is given by the maps-: (FJ} ,(D))? — FpiH(D)
with (a,b) — (a — b). Further, since any Heyting algebra is a pre-Heyting algebr
and the inclusion¥ ,(D) C Fj,'(D) may be seen as given by the mapping-

(1 — a), the natural maps sending generators to generators mafaltveing colimit
diagrams commute

Dt K(D)C i K(K(D))&---

iid tLgl ¢92

DL Fya(D) s FPQIA(D)CL)"'
Notice that under the assignment-» 1 — a, the equation (i) becomés— b < a — b
which is true in any pre HA by (2), and (ii) becom@s— a) A (a — b) < (1 — b)
which is true in any pre HA by virtue of (4). So these equatiare already satisfied
in the steps of the upper sequence. However, an easy caousdiiows that foD the
three-element lattice — (v — 0) and(1 — u) — (1 — 0) are not equal (where is
the middle element) thus the implication is not well-defimedthe limit of the upper
sequence. We remedy this by taking a quotient with respebetoelational scheme

l=o(a—=b=(1—a)—(1—0)

in the second iteration of the functdt and onwards. We proceed, as we've done
throughout this paper by identifying the dual correspondéthis equation.

Proposition 5.2. Let D be a finite distributive lattice and, b € D. The inequality
l-(a—=b<(1—a)—(1—0b
holds inK (K (D)).



Proof. By axiom (3) it follows that— is order reversing in the first coordinate so that
we havel — (a — b) < (1 — a) — (a — b) sincel > 1 — a. Also by Lemma 3.2,
we have(l — a) — (¢ — b) = (1 — a) — [(1 — a) A (a — b)]. Now using (4) we
have(l — a)A (a - b) <1—bsothat(l - a) - (a = b) < (1 —a)— (1 —0d).

By transitivity of the order we have the desired result. a

Proposition 5.3. Let D be a finite distributive lattice an& = (J(D), <) its dual
poset. Further, lef be a congruence oK (K (D)). Then the following are equivalent:

1. For all a,b € D the inequality(l — a) — (1 — b) <1 — (a — b) holds in
K(K(D))/6;

2. Forall z,y € X the inequality(l — z) — (1 — k(y)) <1 — (z — k(y)) holds
in K(K(D))/0

Proof. (i) implies (i) is clear since (ii) is a special case of (i)e\prove that (ii) implies

0)
I—a)—1=b=(\ A-2)->( A\ 0=cr@)

X3r<a Xy b

= N\ (1—2) = (1 —ky)

X>z<a
X2y£b

< N\ (=@ —5y)

X>z<a
Xayjéb

—1- A (@)

X3z<a
XoyLb
=1— (a—0D)).
O

We are now ready to translate this into a dual property whiehwill call (G) after
Ghilardi who introduced it in [12].

Proposition 5.4. Let X be a finite poset. The following conditions are equivalent:
1. Va,y € X the inequalities
(1—2) = (1 &(y)) <1— (& — r(y)) hold inO(P, (P, (X));
2. V1 € P (P.(X)) VT e TVS € P.(X)
(S<T = 3TIT'er (T <Tandroot(S) =root(T")) (G)

Proof. First we prove that (1) implies (2). To this end suppose (13itiand letl"
T € P.(P.(X)) andS € P.(X). Suppose that for all” € 7 eitherT’ &« T or



root(S) # root(T"). Now considerr = |T N 7. We obviously have thatT' N 7 is a
rooted subset dP,.(X) and therefore

= (1T'N7) € Pr(Pr(X)) (%)2:

We haveroot(S) # root(T") for all T’ € 7r, and thus, letting: = root(S) and using
the observation in Proposition 4.3, we have

VI' € root(T') # x
VI"err (T"'<l—z = T'<1—k(z))
e < (1= 2) = (1 A(x)
T <1— (x — k(x))
VT’ € mp T' <z — k()
VI"errVyeT (y<z = y<&k(z))
VI’ € 1 xg T
xgT.

Pretett

The two implications come from the fact that we assume that¢ids and because, in
particular,T” € 7, respectively. Now we have = root(S) € Sbutz ¢ TsoS £ T
and we have proved (2) by contraposition.

Now suppose (2) holds,lety € X, andletr € P.(P,(X))withT < (1 — z) — (1 — k(y)).

T< (1 =)= (1= k(y)
— Vl'er T<l—-z = T<1-k(y)
— Vl'er T<lz = T< k).

We want to show thal' < = — «(y) for eachT' € 7. That is, that for alk € T we
havez < z impliesz < k(y). So letz € T with z < x. We obviously have thatzNT
is a rooted subset of and therefore
T.=(l2NT) € P.(X) (%)1-
SinceT, < T it follows by (2) that
Ir'er (T' < T andz = root(T,) = root(T")).
Now x > z = root(T,) = root(T') implies thatT’ < |z and thus we hav&’ <

Lk (y). In particular,z = root(T') < k(y). That is, we have shown that for alle T,
if z <z thenz < k(y) as required. O

Our strategy in building the free-generated Heyting algebra will be to start wih
the freen-generated distributive lattice, embed it D), and then this in a quotient
of K(K (D)) obtained by modding out by — (a — b) = (1 — a) — (1 — b) for



a,b € D. For the further iterations ok this identification is iterated. The following is
the general situation that we need to consider, viewed ytuall

Xo <2 P (Xo) <=L P (Pr(X0))

L)

X, ~—P.(Xy)

t

Xo

For this reason the inductive step deals with a quotient otiatignt and we need
to refine the Proposition 5.4 above. We note that it holds mdy éor P,.(X) and
P-(P-(X)), but also for any subsety; C P,(X) and Xo C P,(X;) satisfying
(¥)1 and (x)2, respectively. Indeed, these are the only specific pragedf P, (X)
and P, (P,(X)) that we used in the proof of the proposition. Therefore, weehhe
following corollary.

Corollary 5.5. Let X, be a finite posetX; a sub-poset oP,.(Xj), andX» a sub-poset
of P.(X1). Fori = 1 and2, let (x); be the condition

zeTeX, = T,={xzNT)eX;
If the conditions£); and () both hold then the following are equivalent:
1. Va,y € X, the inequalities
(1= ) = (1= k(y)) < 1= (@ — £(y)) hold i O(Xa);
2. VreXoVIierTVS e Xy
(S<T = 3IT'er (T <Tandroot(S) =root(T")). (G)

Proof. The proof is exactly the same as the proof of Proposition ®4ust need to
replaceP,(X) by X, andP, (P, (X)) by X2. We also note that fofl) = (2) direction
we use just the conditiofx). and for(2) = (1) we use only(x);. O

We now consider the following sequence of finite posets
Xo=J(Fpr(n))(=P(n))
Xl = P’I“(XO)
Forn>1 X,p1={re€P.(X,)|VT €eTVSeX,
(S<T = 3IT" €7 (T" <Tandroot(S) = root(T"))}.

We denote by the sequence
X() root Xl root XQ
Forn > 1, we say thaV satisfieqx),, if

reTeX, = T,=(znT)eX,.



Lemma 5.6. V satisfies(x),, for eachn > 1 and the root mapsoot : X,,11 — X,
are surjective for each > 0.

Proof. X, consists of all rooted subsets &f and thus(x), is clearly satisfied. Now
letn > 2. We assume that € 7 € X,, and we show that; = |7 N 7 also belongs to
X,.SoletU € 7, S € X,, andS < U. Then sincdJ € T, there exist§/’ € T such
thatU’ < U androot(S) = root(U'). ButU € 7r implies thatU < T'. Therefore we
haveU’ < T and soU’ € 7r. Thus,7r € X,, andV satisfies(x),,, for eachn > 1.
Finally, we show that all theoot maps are surjective. To see this, assdme X,,. We
show that|U € X,,41. Supposd’ € |U and for some5 € X, we haveS < T'. Then
S € |U and by settindl” = S we easily satisfy the conditiofG). Finally, note that
root(lU) = U and thus-oot : X, 11 — X, is surjective. O

Let A be the system

i1

Dy “2s D, C Dy ...
of distributive lattices dual tov. For eachn > 0,4, : D, — D,41, is a lattice
homomorphism dual teoot. By Theorem 4.2(3),,(a) = 1 — q, fora € D,,. By
Lemma 5.6;00t is surjective, so each, is injective. EachX,,,; C P,(X,,) so that
eachD,,; is a quotient oK (D,,) and thus, for each, we also have partial implication
operations:

—n: Dn X Dn - Dn+1
(a,b) — [a—b)].

Here[a — b] is the equivalence class of— b € K(D,,) as an element i), ;. Let
D,, be the limit of A in the category of distributive lattices thén, is naturally turned
into a Heyting algebra.

Lemma 5.7. The operations—,, can be extended to an operaties,, on D,, and the
algebra(D,,, —,) is a Heyting algebra.

Proof. The colimit D, of A may be constructed as the union of thes with D,,
identified with the image of,, : D,, — D, 1. Itis then clear that the partial operations
—n: Dp x D, — D, yield a total, well-defined binary operation provided, fir a
n > 0and alla,b € D,,, we havei,,.1(—,, (a,b)) =—n41 (in(a),i,(b)). Butthisis
exactly

1—=pt1(a—nd)=(1—pna) —n1 (1—40).

As we've shown in Corollary 5.5 and Lemma 5.6, the sequénicand thus the dual
sequenced have been defined exactly so that this holds. It remains tw shat the
algebra(D,,, —) is a Heyting algebra. Let € D,,, then there is some > 0 with a €
D,.Nowa —, a =a —, a € D,41.SinceD,,11 is a further quotient oK' (D,,) and
a —, a = lalready inK (D,,), this is certainly also true il,,.; andlp,., = 1p_ SO
the equation (1) of weak Heyting algebras is satisfie@n, —,). Similarly each of



the equations (2)-(4) are satisfied(iB,,, —,,) so that it is a weak Heyting algebra. But
the two last equations, (i) and (ii) are also satisfied asaempt in the discussion at the
beginning of this section: Let,b € D,,. Then there exisk,n > 0 such thatu € Dy,
andb € D,. Without loss of generality we may assume that< n and then, by
identifying a with its image under the embedding b, into D,,, we obtaina, b € D,,.
Now i, (b) = 1 —, b < a —, b follows from the fact that-,, is a weak Heyting
implication and a weak Heyting implication is order-revegsin the first coordinate.
Thus,i, (b) < a —,, b, which means that < a — b is satisfied inD,,. Moreover, by
axiom (4) of weak Heyting algebras we haile—,, a) A (a —, b) < 1 —,, b. Thus,
in(a) A (a =y b) < i,(b), which means that A (a — b) < b is satisfied inD,, and
(D, —) is a Heyting algebra. O

Corollary 5.8. (D,,, —) is then-generated free Heyting algebra.

Proof. Let Fiz4(n) denote the free HA freely generated hygenerators. This is of
course the same as the free HA generate®b¥'y 4 (D), whereD is the free distribu-

tive lattice generated by elements. As discussed at the beginning of this section this
lattice is the colimit (union) of the chain

D = Fys(D) C Fyys(D) C Fiya(D)...
and the implication orFsr 4 (D) is given by the maps-: (Fg ,(D))? — Fpi'(D)

with (a,b) — (a — b). Further, the natural maps sending generators to gengrator
make the following colimit diagrams commute

DC K(D)( K(K(D))(—> -

o ¢

DL Fya(D)—2 FEIA(D)¢>...

Now, the systemA is obtained from the upper sequence by quotienting out by the
equationsl —,, 11 (a —5 b) = (1 —, a) =41 (1 —, b) for eachn > 0. Since
these equations all hold for the lower sequence, it folldvas theD,, s are intermediate
quotients:

D( K(D)( K(K(D))(—> -

AR S

Dy D, C DoC

o ¢

DL Fya(D)—2 F2 (D)2 . .

Therefore,Fiy 4(n) is a homomorphic image ab,, and any mapf : n — B with
B a Heyting algebra defines a unique extensfonFi;4(n) — B so thatf oi = f
wherei : n — Fya(n) is the injection of the free generators. Sinicactually maps
into the sublattice oF'y 4 (n) generated by:, which is the initial latticeD = Dy in
our sequences, composition pivith the quotient map frond,, to Fya(n) shows that



D,, also has the universal mapping property (without the unigss). The uniqueness
follows sinceD,, clearly is generated by as HA (sinceD, is generated by. as a
bounded latticeD; is generated byD, using—(, and so on). Since the free HA on
n generators is unique up to isomorphism dngd has its universal mapping property
and is a Heyting algebra, it follows it is the free HA (and thetient map fromD,, to
Fr4(n) is in fact an isomorphism). O

6 A coalgebraic representation of wHAs and PHAs

In this section we discuss a coalgebraic semantics for wedlpee-Heyting algebras.
A coalgebraic representation of modal algebras and digiviomodal algebras can be
foundin [1], [16] and [20], [7], respectively.

We recall that eéStone spacés a compact Hausdorff space with a basis of clopen
sets. For a Stone spac§, its Vietoris spacé/(X) is defined as the set of all closed
subsets ofX, endowed with the topology generated by the subbasis

1.0OU={FeV(X): FCU},
2. 0U={FeV(X):FnU # 0},

whereU ranges over all clopen subsetsXf It is well known thatX is a Stone space iff
V(X) is a Stone space. Léf and X’ be Stone spaces ayfid X — X’ be a continuous
map. Therd/(f) = f[] is a continuous map betwe&f(X) andV (X’). We denote by
V' the functor on Stone spaces that maps every Stone spdreits Vietoris space
V(X) and maps every continuous m@po V' (f). Every modal algebréB, (1) can be
represented as a coalgelpfe, o : X — V X)) for the Vietoris functor on Stone spaces
[1, 16]. A coalgebraic representation of distributive miagebras can be found in [20]
and [7]. We note that modal algebras as well as distributiwdahalgebras are given by
rank 1 axioms. Using the same technique as in Section 3, anelitain a description
of free modal algebras and free distributive modal algefa$13], [7].

Our goal is to give a coalgebraic representation for weakiHgywlgebras and pre-
Heyting algebras. Recall thatRriestley spacés a pair(X, <) where X is a Stone
space an is a reflexive, symmetric and transitive relation satisfiythe Priestley
separation axiom

If z,y € X are such that £ y, then there exists a clopen downéget
withy € U andx ¢ U.

We denote byPSthe category of Priestley spaces and order-preservingntants
maps. It is well known that every distributive lattide can be represented as a lattice
of all clopen downsets of the Priestley space of its primerBltGiven a Priestley space
X, letV,.(X) be a subspace &f(X) of all closed rooted subsets &f. The same proof
as forV(X) shows thal/,.(X) is a Stone space.

Lemma 6.1. Let X be a Priestley space. Then

1. (V(X), Q) is a Priestley space.
2. (V.(X), Q) is a Priestley space.



Proof. (1) As we mentioned abovE (X) is a Stone space. Let, F’ € V(X) and
F ¢ F'. Then there exists € F such that: ¢ F’. Since every compact Hausdorff
space is normal, there exists a clopen Besuch thatF” C U andxz ¢ U. Thus,
F' € OU and F' ¢ OU. All we need to observe now is that for each clofgéf X,
the setU is a clopen downset df (X). But this is obvious.

(2) the proof is the same as for (1). a

Let (X, <) and(X’, <’) be Priestley spaces arfd: X — X’ a continuous order-
preserving map. Then it is easy to check thdtf) = f[] is a continuous order-
preserving map betwedl (X), C) and(V(X’), C), andV,.(f) = f[] is a continuous
order-preserving map betweél.(X), C) and(V,.(X’), C). Thus,V andV, define
functors on the category of Priestley spaces.

Definition 6.2. (Celani and Jansana [10]) A weak Heyting space is a triplg <, R)
such that(X, <) is a Priestley space an® is a binary relation onX satisfying the
following conditions:

1. R(z) = {y € X : xRy} is a closed set, for eachc X.

2. Foreachr,y,z € X if ¢ < yandxzRz, thenyRz.

3. For each clopen sV C X the sets[R|(U) = {z € X : R(z) C U} and
(R)({U)={x €U : R(z)NU # 0} are clopen.

Let (X, <, R) and(X’, <, R') be two weak Heyting spaces. We say tfiatX —
X' is a weak Heyting morphism if is continuous<-preserving and?-bounded mor-
phism (i.e., for eaclr € X we havefR(z) = R’f(z)). Then the category of weak
Heyting algebras is dually equivalent to the category ofkigayting spaces and weak
Heyting morphisms [10]. We will quickly recall how the duairfctors are defined on
objects. Given a weak Heyting algehrd, —) we take a Priestley duaf 4 of A and
defineR 4 on X 4 by setting: foreach,y € X4, xRy ifforeacha,b € A,a — b€ x
andb € x imply b € y. Conversely, if X, <, R) is a weak Heyting space, then we take
the distributive lattice of all clopen downsets_&fand for clopen downsets, V' C X
we definel -V ={z € X : R(z)NU CV}.

Remark 6.3.In fact, [10] works with clopen upsets instead of downsetsthe inverse
of the relationk. We chose working with downsets to be consistent with theipus
parts of the paper.

Theorem 6.4. The category of weak Heyting spaces is isomorphic to thegoateof
Vietoris coalgebras on the category of Priestley spaces.

Proof. Given a weak Heyting spadeX, <, R). We consider a coalgebt&, R(.) :

X — V(X)). The mapR(.) is well defined by Definition 6.2(1). It is order-preserving
by Definition 6.2(2) and is continuous by Definition 6.2(3)UE, (X, R(.) : X —
V(X)) is aV-coalgebra. Conversely, IéK, « : X — V(X)) be aV/-coalgebra. Then
(X, R.), wherezx R,y iff y € a(z), is a weak Heyting space. Inded@ibeing well de-
fined and order-preserving imply conditions (1) and (2) ofilidon 6.2, respectively.
Finally, o being continuous implies condition (3) of Definition 6.2.aklthis correspon-
dence can be lifted to the isomorphism of categories is eacleck. O



We say that a weakly Heyting spa¢®’, <, R) is pre-Heyting spacéf for each
x € X the setR(x) is rooted.

Theorem 6.5.

1. The category of pre-Heyting algebras is dually equivaterthe category of pre-
Heyting spaces.

2. The category of pre-Heyting spaces is isomorphic to tiegoay of V,.-coalgebras
on the category of Priestley spaces.

Proof. (1) By the duality of weak Heyting algebras and weak Heytipaces it is suffi-
cient to show that a weak Heyting algebra satisfies condit{dj-(6) of Definition 4.1
iff R(x) is rooted. We will show that, as in Theorem 4.2, the axiom &gquiva-
lent to R(z) # 0, for eachz € X, while axiom (6) is equivalent td2(x) having
a unigue maximal element. Assume a weak Heyting sate<, R) validates axiom
(5). Thenin the weak Heyting algebra of all clopen downsefs ave haveX — @) = ().
Thus for eachy: € X we haveR(z) C § iff x € 0. Thus, for each: € X we have
R(z) # 0. Now suppose for each clopen downsetd” C X the following holds
X —->UuV)C (X —-U)U(X — V). Then we have thak(z) C U UV implies
R(z) CUor R(x) C V. SinceR(z) is closed andX is a Priestley space, we have that
every point ofR(z) is below some maximal point d®(z). We assume that there ex-
ists more than one maximal point &{x). Then the same argument as in [4, Theorem
2.7(a)] shows that there are clopen downdgétandV such thatR(x) C U U V, but
R(z) € U, R(z) € V. This is a contradiction, s&(z) is rooted, On the other hand,
it is easy to check that iR(x) is rooted for each: € X, then (5)-(6) are valid. Finally,
a routine check shows that this correspondence can be tdtad isomorphism of the
categories of pre-Heyting algebras and pre-Heyting spaces

(2) The proof is similar to the proof of Theorem 6.4. The extoadition on pre-
Heyting spaces obviously implies that a m&f) : X — V,.(X) is well defined and
conversely(X,a : X — V(X)) being a coalgebra implies th&, («) is rooted for
eachx € X. The rest of the proof is a routine check. a

Thus, we obtained a coalgebraic semantics/represent#tiseak and pre-Heyting
algebras.

7 Conclusions and future work

In this paper we described finitely generated free (weak, yegting algebras using an
initial algebra-like construction. The main idea is to sfiie axiomatization of Heyting
algebras into its rank 1 and non-rank 1 parts. The rank 1 appemts of Heyting alge-
bras are weak and pre-Heyting algebras. For weak and prérgeajgebras we applied
the standard initial algebra construction and then adjuister Heyting algebras. We
used Birkhoff duality for finite distributive lattices andhfie posets to obtain the dual
characterization of the finite posets that approximate tresdof free algebras. As a
result we obtained Ghilardi’'s representation of these t3asea more systematic and
transparent way. For weak and pre-Heyting algebras we aismuced a neat coalge-
braic representation.



There are a few possible directions for further researclwésentioned in the in-
troduction, although we considered Heyting algebras ifiotistic logic), this method
could be applied to other non-classical logics. More pedgjthe method is available
if a signature of the algebras for this logic can be obtainedddling an extra operator
to a locally finite variety. Thus, various non-rank 1 modaiés such a$4, K4 and
other more complicated modal logics, as well as distrileuthodal logics, are the ob-
vious candidates. On the other hand, one cannot always &ixpkave such a simple
representation of free algebras. The algebras correspgtalother many-valued logics
such asM/ V-algebras|-groups,BC K -algebras and so on, are other examples where
this method could lead to interesting representations rébent work [8] that connects
ontologies with free distributive algebras with operatirews that such representations
of free algebras are not only interesting from a theoreficatt of view, but could have
very concrete applications.
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