17 research outputs found

    Social preferences and network structure in a population of reef manta rays

    Get PDF
    Understanding how individual behavior shapes the structure and ecology ofpopulations is key to species conservation and management. Like manyelasmobranchs, manta rays are highly mobile and wide ranging species threatened byanthropogenic impacts. In shallow-water environments these pelagic rays often formgroups, and perform several apparently socially-mediated behaviors. Group structuresmay result from active choices of individual rays to interact, or passive processes.Social behavior is known to affect spatial ecology in other elasmobranchs, but this isthe first study providing quantitative evidence for structured social relationships inmanta rays. To construct social networks, we collected data from more than 500groups of reef manta rays over five years, in the Raja Ampat Regency of West Papua.We used generalized affiliation indices to isolate social preferences from non-socialassociations, the first study on elasmobranchs to use this method. Longer lastingsocial preferences were detected mostly between female rays. We detectedassortment of social relations by phenotype and variation in social strategies, with theoverall social network divided into two main communities. Overall network structurewas characteristic of a dynamic fission-fusion society, with differentiated relationshipslinked to strong fidelity to cleaning station sites. Our results suggest that fine-scaleconservation measures will be useful in protecting social groups of M. alfredi in theirnatural habitats, and that a more complete understanding of the social nature of mantarays will help predict population response

    Research Priorities to Support Effective Manta and Devil Ray Conservation

    Get PDF
    Manta and devil rays are filter-feeding elasmobranchs that are found circumglobally in tropical and subtropical waters. Although relatively understudied for most of the Twentieth century, public awareness and scientific research on these species has increased dramatically in recent years. Much of this attention has been in response to targeted fisheries, international trade in mobulid products, and a growing concern over the fate of exploited populations. Despite progress in mobulid research, major knowledge gaps still exist, hindering the development of effective management and conservation strategies. We assembled 30 leaders and emerging experts in the fields of mobulid biology, ecology, and conservation to identify pressing knowledge gaps that must be filled to facilitate improved science-based management of these vulnerable species. We highlight focal research topics in the subject areas of taxonomy and diversity, life history, reproduction and nursery areas, population trends, bycatch and fisheries, spatial dynamics and movements, foraging and diving, pollution and contaminants, and sub-lethal impacts. Mobulid rays remain a poorly studied group, and therefore our list of important knowledge gaps is extensive. However, we hope that this identification of high priority knowledge gaps will stimulate and focus future mobulid research

    Les progrès dans la réalisation de la classification quantitative de la psychopathologie

    Get PDF
    Shortcomings of approaches to classifying psychopathology based on expert consensus have given rise to contemporary efforts to classify psychopathology quantitatively. In this paper, we review progress in achieving a quantitative and empirical classification of psychopathology. A substantial empirical literature indicates that psychopathology is generally more dimensional than categorical. When the discreteness versus continuity of psychopathology is treated as a research question, as opposed to being decided as a matter of tradition, the evidence clearly supports the hypothesis of continuity. In addition, a related body of literature shows how psychopathology dimensions can be arranged in a hierarchy, ranging from very broad "spectrum level'' dimensions, to specific and narrow clusters of symptoms. In this way, a quantitative approach solves the "problem of comorbidity'' by explicitly modeling patterns of co-occurrence among signs and symptoms within a detailed and variegated hierarchy of dimensional concepts with direct clinical utility. Indeed, extensive evidence pertaining to the dimensional and hierarchical structure of psychopathology has led to the formation of the Hierarchical Taxonomy of Psychopathology (HiTOP) Consortium. This is a group of 70 investigators working together to study empirical classification of psychopathology. In this paper, we describe the aims and current foci of the HiTOP Consortium. These aims pertain to continued research on the empirical organization of psychopathology; the connection between personality and psychopathology; the utility of empirically based psychopathology constructs in both research and the clinic; and the development of novel and comprehensive models and corresponding assessment instruments for psychopathology constructs derived from an empirical approach. (C) 2020 Published by Elsevier Masson SAS

    Genome-wide SNPs detect no evidence of genetic population structure for reef manta rays (Mobula alfredi) in southern Mozambique

    No full text
    Little is known about the extent of genetic connectivity along continuous coastlines in manta rays, or whether site visitation is influenced by relatedness. Such information is pertinent to defining population boundaries and understanding localized dispersal patterns and behaviour. Here, we use 3057 genome-wide single-nucleotide polymorphisms (SNPs) to evaluate population genetic structure and assess the levels of relatedness at aggregation sites of reef manta rays (Mobula alfredi) in southern Mozambique (n = 114). Contrary to indications of limited dispersal along the southern Mozambican coastline inferred from photo-identification and telemetry studies, our results show no evidence of population structure (non-significant F

    Age-Associated Decline in Thymic B Cell Expression of Aire and Aire-Dependent Self-Antigens

    No full text
    Summary: Although autoimmune disorders are a significant source of morbidity and mortality in older individuals, the mechanisms governing age-associated increases in susceptibility remain incompletely understood. Central T cell tolerance is mediated through presentation of self-antigens by cells constituting the thymic microenvironment, including epithelial cells, dendritic cells, and B cells. Medullary thymic epithelial cells (mTECs) and B cells express distinct cohorts of self-antigens, including tissue-restricted self-antigens (TRAs), such that developing T cells are tolerized to antigens from peripheral tissues. We find that expression of the TRA transcriptional regulator Aire, as well as Aire-dependent genes, declines with age in thymic B cells in mice and humans and that cell-intrinsic and cell-extrinsic mechanisms contribute to the diminished capacity of peripheral B cells to express Aire within the thymus. Our findings indicate that aging may diminish the ability of thymic B cells to tolerize T cells, revealing a potential mechanistic link between aging and autoimmunity. : Mechanisms governing age-associated increases in autoimmunity remain elusive. Expression of Aire and downstream self-antigens by thymic B cells helps tolerize developing T cells. Cepeda et al. report age-associated declines in expression of Aire and self-antigen genes in thymic B cells concomitant with increases in T-bet and IgG2a expression. Keywords: thymus, B cell, aging, Air

    No place like home? High residency and predictable seasonal movement of whale sharks off Tanzania

    No full text
    Highly mobile marine megafauna species, while widely distributed and frequently threatened, often aggregate in distinct localized habitats. Implementation of local management initiatives within these hotspots is more achievable than developing effective conservation strategies that encompass their entire distributions. Such measures have the potential for disproportionate population-level benefits but rely on a detailed understanding of spatiotemporal habitat use. To that end, we examined the residency and small-scale habitat use of 51 whale sharks (Rhincodon typus) over 5 years at an aggregation site in Tanzania using passive acoustic telemetry. Whale sharks were highly resident within and across years, with a combined maximum residency index of 0.39. Although fewer sharks were detected from March to September, residency was high throughout the year. Ancillary photographic-identification data showed that individual residency persisted before and after tag attachment. Kernel utilization distributions (KUD) and movement networks both revealed the same spatiotemporal pattern of habitat use, with a small core habitat (50% KUD area for all sharks combined = 12.99 km2) that predictably changed on a seasonal basis. Activity spaces did not differ with time of day, sex, or size of the sharks, indicating a population-level pattern driven by prey availability. The small and predictable core habitat area at this site means that site-based management options to reduce shark injuries and mortality from boat strike and fishing gear entanglement can be spatially targeted for maximum effectiveness and compliance by human users
    corecore