3,170 research outputs found

    Model for the spatio-temporal intermittency of the energy dissipation in turbulent flows

    Full text link
    Modeling the intermittent behavior of turbulent energy dissipation processes both in space and time is often a relevant problem when dealing with phenomena occurring in high Reynolds number flows, especially in astrophysical and space fluids. In this paper, a dynamical model is proposed to describe the spatio-temporal intermittency of energy dissipation rate in a turbulent system. This is done by using a shell model to simulate the turbulent cascade and introducing some heuristic rules, partly inspired by the well known pp-model, to construct a spatial structure of the energy dissipation rate. In order to validate the model and to study its spatially intermittency properties, a series of numerical simulations have been performed. These show that the level of spatial intermittency of the system can be simply tuned by varying a single parameter of the model and that scaling laws in agreement with those obtained from experiments on fully turbulent hydrodynamic flows can be recovered. It is finally suggested that the model could represent a useful tool to simulate the spatio-temporal intermittency of turbulent energy dissipation in those high Reynolds number astrophysical fluids where impulsive energy release processes can be associated to the dynamics of the turbulent cascade.Comment: 22 pages, 9 figure

    Precision tests of the Standard Model with leptonic and semileptonic kaon decays

    Full text link
    We present a global analysis of leptonic and semileptonic kaon decays data, including all recent results by BNL-E865, KLOE, KTeV, ISTRA+, and NA48. Experimental results are critically reviewed and combined, taking into account theoretical (both analytical and numerical) constraints on the semileptonic kaon form factors. This analysis leads to a very accurate determination of Vus and allows us to perform several stringent tests of the Standard Model

    The impact of ESG factors on financial efficiency: An empirical analysis for the selection of sustainable firm portfolios

    Get PDF
    Environmental, Social, and Governance (ESG) factors are increasingly at the center of corporate and investment decisions. In this context, the aim of the paper was to test whether ESG factors impact on financial efficiency of a sample of firms belonging to different European sectors. This study enriches the literature of the field through a multi-sectoral analysis. The Data Envelopment Analysis was used as widely considered in empirical and financial studies. Research findings showed that ESGs impact on firm efficiency differently over sectors: some of them are more sensitive than others to ESG factors. Furthermore, for most sensitive sectors the risk-return characteristics related to ESGs were represented in order to provide insights for investors aiming to construct efficient and sustainable firm portfolios to invest in

    First results from an aging test of a prototype RPC for the LHCb Muon System

    Get PDF
    Recent results of an aging test performed at the CERN Gamma Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon System are presented. The results are based on an accumulated charge of about 0.45 C/cm2^2, corresponding to about 4 years of LHCb running at the highest background rate. The performance of the chamber has been studied under several photon flux values exploiting a muon beam. A degradation of the rate capability above 1 kHz/cm2^2 is observed, which can be correlated to a sizeable increase of resistivity of the chamber plates. An increase of the chamber dark current is also observed. The chamber performance is found to fulfill the LHCb operation requirements.Comment: 6 pages, 9 figures, presented at the International Workshop on Aging Phenomena in Gaseous Detectors'', DESY-Hamburg (Germany), October 200

    Preliminary results of an aging test of RPC chambers for the LHCb Muon System

    Get PDF
    The preliminary results of an aging test performed at the CERN Gamma Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon System are presented. The results are based on an accumulated charge density of 0.42 C/cm^2, corresponding to about 4 years of LHCb running at the highest background rate. We observe a rise in the dark current and noise measured with source off. The current drawn with source on steadily decreased, possibly indicating an increase of resistivity of the chamber plates. The performance of the chamber, studied with a muon beam under several photon flux values, is found to still fulfill the LHCb operation requirements.Comment: 4 pages, 6 figures, presented at RPC2001, VIth Workshop on Resistive Plate Chambers and Related Detectors, November 26-27 2001, Coimbra, Portuga

    Complete compensation of criss-cross deflection in a negative ion accelerator by magnetic technique

    Get PDF
    During 2016, a joint experimental campaign was carried out by QST and Consorzio RFX on the Negative Ion Test Stand (NITS) at the QST Naka Fusion Institute, Japan, with the purpose of validating some design solutions adopted in MITICA, which is the full-scale prototype of the ITER NBI, presently under construction at Consorzio RFX, Padova, Italy. The main purpose of the campaign was to test a novel technique, for suppressing the beamlet criss-cross magnetic deflection. This new technique, involving a set of permanent magnets embedded in the Extraction Grid, named Asymmetric Deflection Compensation Magnets (ADCM), is potentially more performing and robust than the traditional electrostatic compensation methods. The results of this first campaign confirmed the effectiveness of the new magnetic configuration in reducing the criss-cross magnetic deflection. Nonetheless, contrary to expectations, a complete deflection correction was not achieved. By analyzing in detail the results, we found indications that a physical process, taking place just upstream of the plasma grid, was giving an important contribution to the final deflection of the negative ion beam. This process appears to be related to the drift of negative ions inside the plasma source, in the presence of a magnetic field transverse to the extraction direction, and results in a non-uniform ion current density extracted at the meniscus. Therefore, the numerical models adopted in the design were improved by including this previously disregarded effect, so as to obtain a much better matching with the experimental results. Based on the results of the first campaign, new permanent magnets were designed and installed on the Extraction Grid of NITS. A second QST-Consorzio RFX joint experimental campaign was then carried out in 2017, demonstrating the complete correction of the criss-cross deflection and confirming the validity of the novel magnetic configuration and of the hypothesis behind the new models. This contribution presents the results of the second joint experimental campaign on NITS along with the overall data analysis of both campaigns, and the description of the improved models. A general picture is given of the relation among magnetic field, beam energy, meniscus non-uniformity and beamlet deflection, constituting a useful database for the design of future machines

    Ideal evolution of MHD turbulence when imposing Taylor-Green symmetries

    Get PDF
    We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the four-fold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a re-gridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 614436144^3 points, and three different configurations on grids of 409634096^3 points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33t=2.33 and t=2.70.t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.Comment: 18 pages, 13 figures, 2 tables; submitted to Physical Review

    New results from an extensive aging test on bakelite Resistive Plate Chambers

    Get PDF
    We present recent results of an extensive aging test, performed at the CERN Gamma Irradiation Facility on two single--gap RPC prototypes, developed for the LHCb Muon System. With a method based on a model describing the behaviour of an RPC under high particle flux conditions, we have periodically measured the electrode resistance R of the two RPC prototypes over three years: we observe a large spontaneous increase of R with time, from the initial value of about 2 MOhm to more than 250 MOhm. A corresponding degradation of the RPC rate capabilities, from more than 3 kHz/cm2 to less than 0.15 kHz/cm2 is also found.Comment: 6 pages, 7 figures, presented at Siena 2002, 8th Topical Seminar on Innovative Particle and Radiation Detectors 21-24 October 2002, Siena, Ital

    Novel Quark Fragmentation Functions and the Nucleon's Transversity Distribution

    Full text link
    We define twist-two and twist-three quark fragmentation functions in Quantum Chromodynamics (QCD) and study their physical implications. Using this formalism we show how the nucleon's transversity distribution can be measured in single pion inclusive electroproduction.Comment: 10 pages, uses PHYZZX macro package, 2 PostScript figures (added using FIGURES). MIT-CTP-215

    EuroGammaS gamma characterisation system for ELI-NP-GBS: The nuclear resonance scattering technique

    Get PDF
    A Gamma Beam Characterisation System has been designed by the EuroGammaS association for thecommissioning and development of the Extreme Light Infrastructure-Nuclear Physics Gamma Beam System(ELI-NP-GBS) to be installed in Magurele, Romania. The characterisation system consists of four elements: aCompton spectrometer, a sampling calorimeter, a nuclear resonant scattering spectrometer (NRSS) and a beamprofile imager. In this paper, the nuclear resonant scattering spectrometer system, designed to perform anabsolute energy calibration for the gamma beam, will be describe
    • 

    corecore