50 research outputs found

    How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forest-steppe

    Get PDF
    Recent advances in ecology and biogeography demonstrate the importance of fire and large herbivores - and challenge the primacy of climate - to our understanding of the distribution, stability, and antiquity of forests and grasslands. Among grassland ecologists, particularly those working in savannas of the seasonally dry tropics, an emerging fire-herbivore paradigm is generally accepted to explain grass dominance in climates and on soils that would otherwise permit development of closed-canopy forests. By contrast, adherents of the climate-soil paradigm, particularly foresters working in the humid tropics or temperate latitudes, tend to view fire and herbivores as disturbances, often human-caused, which damage forests and reset succession. Towards integration of these two paradigms, we developed a series of conceptual models to explain the existence of an extensive temperate forest-grassland mosaic that occurs within a 4.7 million km(2) belt spanning from central Europe through eastern Asia. The Eurasian forest-steppe is reminiscent of many regions globally where forests and grasslands occur side-by-side with stark boundaries. Our conceptual models illustrate that if mean climate was the only factor, forests should dominate in humid continental regions and grasslands should prevail in semi-arid regions, but that extensive mosaics would not occur. By contrast, conceptual models that also integrate climate variability, soils, topography, herbivores, and fire depict how these factors collectively expand suitable conditions for forests and grasslands, such that grasslands may occur in more humid regions and forests in more arid regions than predicted by mean climate alone. Furthermore, boundaries between forests and grasslands are reinforced by vegetation-fire, vegetation-herbivore, and vegetation-microclimate feedbacks, which limit tree establishment in grasslands and promote tree survival in forests. Such feedbacks suggest that forests and grasslands of the Eurasian forest-steppe are governed by ecological dynamics that are similar to those hypothesised to maintain boundaries between tropical forests and savannas. Unfortunately, the grasslands of the Eurasian forest-steppe are sometimes misinterpreted as deforested or otherwise degraded vegetation. In fact, the grasslands of this region provide valuable ecosystem services, support a high diversity of plants and animals, and offer critical habitat for endangered large herbivores. We suggest that a better understanding of the fundamental ecological controls that permit forest-grassland coexistence could help us prioritise conservation and restoration of the Eurasian forest-steppe for biodiversity, climate adaptation, and pastoral livelihoods. Currently, these goals are being undermined by tree-planting campaigns that view the open grasslands as opportunities for afforestation. Improved understanding of the interactive roles of climate variability, soils, topography, fire, and herbivores will help scientists and policymakers recognise the antiquity of the grasslands of the Eurasian forest-steppe

    Season of Prescribed Fire Determines Grassland Restoration Outcomes After Fire Exclusion and Overgrazing

    Get PDF
    Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4 grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long-term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire-excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old-growth grasslands to serve as reference sites. Herbaceous-layer plant communities in all experimental sites were compositionally and functionally distinct from old-growth grasslands, with little recovery of perennial C4 grasses and long-lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3 grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot-level plant species richness (range 89–95 species/1000 m2). At the local-scale, summer sites (23 species/m2) and old-growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old-growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grass Bothriochloa ischaemum by maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlled B. ischaemum invasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old-growth grassland community composition. Nonetheless, this long-term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research

    How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forest-steppe

    Get PDF
    Recent advances in ecology and biogeography demonstrate the importance of fire and large herbivores – and challenge the primacy of climate – to our understanding of the distribution, stability, and antiquity of forests and grasslands. Among grassland ecologists, particularly those working in savannas of the seasonally dry tropics, an emerging fire–herbivore paradigm is generally accepted to explain grass dominance in climates and on soils that would otherwise permit development of closed‐canopy forests. By contrast, adherents of the climate–soil paradigm, particularly foresters working in the humid tropics or temperate latitudes, tend to view fire and herbivores as disturbances, often human‐caused, which damage forests and reset succession. Towards integration of these two paradigms, we developed a series of conceptual models to explain the existence of an extensive temperate forest–grassland mosaic that occurs within a 4.7 million km(2) belt spanning from central Europe through eastern Asia. The Eurasian forest‐steppe is reminiscent of many regions globally where forests and grasslands occur side‐by‐side with stark boundaries. Our conceptual models illustrate that if mean climate was the only factor, forests should dominate in humid continental regions and grasslands should prevail in semi‐arid regions, but that extensive mosaics would not occur. By contrast, conceptual models that also integrate climate variability, soils, topography, herbivores, and fire depict how these factors collectively expand suitable conditions for forests and grasslands, such that grasslands may occur in more humid regions and forests in more arid regions than predicted by mean climate alone. Furthermore, boundaries between forests and grasslands are reinforced by vegetation–fire, vegetation–herbivore, and vegetation–microclimate feedbacks, which limit tree establishment in grasslands and promote tree survival in forests. Such feedbacks suggest that forests and grasslands of the Eurasian forest‐steppe are governed by ecological dynamics that are similar to those hypothesised to maintain boundaries between tropical forests and savannas. Unfortunately, the grasslands of the Eurasian forest‐steppe are sometimes misinterpreted as deforested or otherwise degraded vegetation. In fact, the grasslands of this region provide valuable ecosystem services, support a high diversity of plants and animals, and offer critical habitat for endangered large herbivores. We suggest that a better understanding of the fundamental ecological controls that permit forest–grassland coexistence could help us prioritise conservation and restoration of the Eurasian forest‐steppe for biodiversity, climate adaptation, and pastoral livelihoods. Currently, these goals are being undermined by tree‐planting campaigns that view the open grasslands as opportunities for afforestation. Improved understanding of the interactive roles of climate variability, soils, topography, fire, and herbivores will help scientists and policymakers recognise the antiquity of the grasslands of the Eurasian forest‐steppe

    Comment on "The extent of forest in dryland biomes"

    Get PDF
    Bastin et al (Reports, 12 May 2017, p. 635) infer forest as more globally extensive than previously estimated using tree cover data. However, their forest definition does not reflect ecosystem function or biotic composition. These structural and climatic definitions inflate forest estimates across the tropics and undermine conservation goals, leading to inappropriate management policies and practices in tropical grassy ecosystems

    Natural climate solutions for the United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517

    Biome awareness disparity is BAD for tropical ecosystem conservation and restoration

    Get PDF
    We introduce the concept of Biome Awareness Disparity (BAD)—defined as a failure to appreciate the significance of all biomes in conservation and restoration policy—and quantify disparities in (a) attention and interest, (b) action and (c) knowledge among biomes in tropical restoration science, practice and policy. By analysing 50,000 tweets from all Partner Institutions of the UN Decade of Ecosystem Restoration, and 45,000 tweets from the main science and environmental news media world-wide, we found strong disparities in attention and interest relative to biome extent and diversity. Tweets largely focused on forests, whereas open biomes (such as grasslands, savannas and shrublands) received less attention in relation to their area. In contrast to these differences in attention, there were equivalent likes and retweets between forest versus open biomes, suggesting the disparities may not reflect the views of the general public. Through a literature review, we found that restoration experiments are disproportionately concentrated in rainforests, dry forests and mangroves. More than half of the studies conducted in open biomes reported tree planting as the main restoration action, suggesting inappropriate application of forest-oriented techniques. Policy implications. We urge scientists, policymakers and land managers to recognise the value of open biomes for protecting biodiversity, securing ecosystem services, mitigating climate change and enhancing human livelihoods. Fixing Biome Awareness Disparity will increase the likelihood of the United Nations Decade on Ecosystem Restoration successfully delivering its promises.This article also appears in: Cross Society Special Feature on the Decade of Ecosystem Restoration.DATA AVAILABILITY STATEMENT: Data available via the Dryad Digital Repository https://doi.org/10.6084/m9.figshare.16778200.v1 (Silveira et al., 2021).Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fundação de Amparo à Pesquisa do Estado de Minas Gerais; CNPq; CAPES; NERC-FAPESP; USDA-NIFA Sustainable Agricultural Systems; USDA-NIFA McIntire-Stennis Project; National Science Foundation.http://www.wileyonlinelibrary.com/journal/jpe2022-10-15hj2022Zoology and Entomolog

    Gene Expression-Based Classifiers Identify Staphylococcus aureus Infection in Mice and Humans

    Get PDF
    Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays and inappropriate antibiotic use. A growing literature suggests the host’s inflammatory response to the pathogen represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was validated in outbred mice (AUC>0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S. aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans (AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and 0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the host response to it; and identifies new diagnostic and therapeutic avenues

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
    corecore