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Abstract

Staphylococcus aureus causes a spectrum of human infection. Diagnostic delays and uncertainty lead to treatment delays
and inappropriate antibiotic use. A growing literature suggests the host’s inflammatory response to the pathogen
represents a potential tool to improve upon current diagnostics. The hypothesis of this study is that the host responds
differently to S. aureus than to E. coli infection in a quantifiable way, providing a new diagnostic avenue. This study uses
Bayesian sparse factor modeling and penalized binary regression to define peripheral blood gene-expression classifiers of
murine and human S. aureus infection. The murine-derived classifier distinguished S. aureus infection from healthy controls
and Escherichia coli-infected mice across a range of conditions (mouse and bacterial strain, time post infection) and was
validated in outbred mice (AUC.0.97). A S. aureus classifier derived from a cohort of 94 human subjects distinguished S.
aureus blood stream infection (BSI) from healthy subjects (AUC 0.99) and E. coli BSI (AUC 0.84). Murine and human responses
to S. aureus infection share common biological pathways, allowing the murine model to classify S. aureus BSI in humans
(AUC 0.84). Both murine and human S. aureus classifiers were validated in an independent human cohort (AUC 0.95 and
0.92, respectively). The approach described here lends insight into the conserved and disparate pathways utilized by mice
and humans in response to these infections. Furthermore, this study advances our understanding of S. aureus infection; the
host response to it; and identifies new diagnostic and therapeutic avenues.
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Introduction

Septicemia causes substantial morbidity and mortality among

patients in the United States, with a rising burden of Staphylococcus

aureus infection [1,2]. Although blood cultures are the diagnostic

gold standard for blood stream infection (BSI), sensitivity is limited

and results are not rapidly available [3]. Such diagnostic delays

can extend the time to administration of effective antibiotics,

which is an independent risk factor for mortality [4,5]. Conversely,

diagnostic uncertainty also leads to high rates of empiric

overtreatment, fueling the burden of antimicrobial resistance

[6,7]. Thus, novel approaches that are faster and more accurate

are needed to differentiate between the major pathogens causing

sepsis and BSI.

Whereas conventional diagnostic approaches have focused on

identifying the infecting pathogen, a growing body of evidence

suggests that the host’s inflammatory response to the pathogen also

represents a potential diagnostic tool. In vitro and in vivo
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experiments have revealed fundamental differences in host

response to Gram-positive and Gram-negative bacterial infection

[8–10], including significant differences in Toll-like receptor

(TLR) signaling [11,12] and cytokine production [13,14].

Distinctive gene expression profiles exist for viral [15,16], bacterial

[17,18], and fungal infections [19,20] in both animal model

systems and ex vivo stimulation of human peripheral blood

leukocytes. Peripheral blood mononuclear cell (PBMC) gene

expression signatures have also been evaluated in humans for a

variety of conditions including severe infection [21], bacterial vs.

viral illness [10], systemic lupus erythematosus [22], atherosclero-

sis [23], and radiation exposure [24]. Taken together, these studies

provide strong evidence that global changes in host blood gene

expression patterns can be used to differentiate disease states.

The current study used S. aureus and Escherichia coli as

prototypical Gram-positive and Gram-negative bacteria due to

their prevalence and clinical relevance. Host gene expression was

measured in mice with bacterial infection across multiple

conditions. From these data, we derived a molecular classifier

for S. aureus infection in inbred mice and validated it in a cohort of

outbred mice. Next, we used host gene expression data from a

well-characterized cohort of septic human subjects to identify a

molecular classifier that accurately distinguished S. aureus BSI from

E. coli BSI or uninfected controls. Murine and human S. aureus

classifiers exhibited significant similarity particularly in comparing

S. aureus infection to the healthy state. Furthermore, both murine

and human classifiers were validated in an independent human

cohort. This study is the first to demonstrate that the in vivo host

response to Gram-positive infections is conserved from mouse to

human and can be harnessed as a novel diagnostic strategy in

patients with bacterial sepsis.

Materials and Methods

Ethics Statement
All animal experiments were carried out in strict accordance

with the recommendations of NIH guidelines, the Animal Welfare

Act, and US federal law. All animal procedures were approved by

the Institutional Animal Care and Use Committee (IACUC) of

Duke University (IACUC number: #1310905) which has been

accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC) International. All animals

were housed in a centralized and AAALAC accredited research

animal facility that is fully staffed with trained husbandry,

technical, and veterinary personnel. The Institutional Review

Boards at Duke University Medical Center, the Durham VA

Medical Center, and Henry Ford Hospital approved the human

studies referenced in this work. Written informed consent was

obtained for all subjects after the nature and possible consequences

of the studies were explained.

Preparation of Bacterial Cells
One methicillin-susceptible S. aureus (Sanger 476) and three

methicillin-resistant S. aureus genetic backgrounds (USA100,

USA300, and MW2) were used. Overnight S. aureus cultures were

inoculated into fresh tryptic soy broth and incubated aerobically at

30uC to log-phase growth (optical density 600 nm of ,1.0) [25].

Cells were harvested by centrifugation, rinsed, and resuspended in

phosphate-buffered saline (PBS). E. coli O18:K1:H7 was grown at

30uC overnight in Luria-Bertani broth [26]. Cultures were then

diluted with fresh medium and grown for an additional 1 to 2

hours. Upon reaching log phase, cells were treated as described for

S. aureus.

Human Subjects
Subjects were enrolled at Duke University Medical Center

(DUMC; Durham, NC), Durham VAMC (Durham, NC), UNC

Hospitals (Chapel Hill, NC), and Henry Ford Hospital (Detroit,

Michigan) as part of a prospective, NIH-sponsored study to

develop novel diagnostic tests for severe sepsis and community-

acquired pneumonia (ClinicalTrials.gov NCT00258869) [27,28].

Enrolled patients had a known or suspected infection and

exhibited two or more Systemic Inflammatory Response Syn-

drome criteria [29]. Patients were excluded if they had an

imminently terminal co-morbid condition, advanced AIDS (CD4

count ,50), were being appropriately treated with an antibiotic

pre-enrollment, or were enrolled in another clinical trial. Blood

was drawn for microarray analysis on the day of hospital

presentation with the exception of two subjects (S19 and S29).

In these latter two cases, blood was not available for microarray

preparation from that time point. However, blood drawn 24 hours

into the hospitalization was available and so was used. Subjects in

the current report had culture-confirmed monomicrobial BSI due

to S. aureus (n = 32; median age 58 years; range 24–91) or E. coli

(n = 19; median age 58; range 25–91). Uninfected controls (n = 43;

median age 30 years; range 23–59) were enrolled at DUMC as

part of a study on the effect of aspirin on platelet function among

healthy volunteers [30]. Subjects were recruited through adver-

tisements posted on the Duke campus. Blood used to derive gene

expression data in these healthy controls was drawn prior to

aspirin challenge.

Murine Sepsis Experiments
Except where noted, mice were purchased from The Jackson

Laboratory (Bar Harbor, ME) and allowed to acclimate for 7 days.

All experiments were performed on 6–8 week old mice. For the

murine S. aureus classifier, seven inbred mouse strains (3 mice/

strain: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C57BL/6J,

C3H/HeJ, and NOD/LtJ) were IP inoculated with 107 CFU/g

of S. aureus Sanger476, euthanized at 2h after injection, and bled.

This was repeated using the four different S. aureus genetic

backgrounds (USA100, USA300, MW2, and Sanger476) in A/J

mice (n = 3 per S. aureus background). For time series experiments,

both A/J and C57BL/6J mouse strains were IP inoculated with S.

aureus Sanger476 as above, and sacrificed at 2, 4, 6, and 12 h after

injection (n = 5 per mouse strain at each time point). For survival

experiments, mice were monitored twice daily after injection and

culled upon reaching a moribund state. Animal sacrifice was

carried out by carbon dioxide inhalation. Blood was collected by

intracardiac puncture and stored in RNAlater at 270uC for

microarray experiments.

The murine E. coli infection model was carried out as described

above except a smaller inoculum (66104 CFU/g) was used.

Furthermore, the time at which animals were sickest but still alive

was 24 hours for E. coli inoculation, which is later than for S. aureus.

Consequently, A/J and C57BL/6J mice inoculated with E. coli

were sacrificed 24 h after challenge (n = 5 per mouse strain).

Control mice were not injected.

Outbred CD-1 mice were purchased from Charles River

Laboratories (Wilmington, MA) to validate the murine S. aureus

classifier. CD-1 mice were IP inoculated with 107 CFU/g of S.

aureus (USA300 and Sanger 476) and 66104 CFU/g of E. coli.

Animals including controls were sacrificed at 2 and 24 h post-

infection (n = 10 mice per pathogen at each time point). Blood was

collected and stored as described for the derivation cohort.

Gene Expression Classifier for S. aureus Infection
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Microarray Preparation (Additional Details Available in
Methods S1)

Total RNA was extracted from mouse blood using the Mouse

RiboPure Blood RNA kit (Ambion, Austin, TX) according to the

manufacturer’s instructions. Globin mRNA was removed from

whole blood RNA using the Globinclear kit (Ambion, Austin, TX).

All samples passed the quality criteria of the Agilent Bioanalyzer

and were used for microarray analysis. Since the total RNA yield

of many samples was low, one round of linear amplification was

performed for all samples using the MessageAmp Premier kit

(Ambion, Austin, TX). RNA integrity numbers were calculated for

all samples and found to be within tolerance limits. Microarrays

were normalized using Robust Multichip Average (RMA).

Affymetrix GeneChip Mouse Genome 430 2.0 Arrays were used

(Santa Clara, CA). Biotin-labeled cDNA was hybridized to the

arrays for 16 hours at 45uC according to the manufacturer’s

instructions. Arrays were then washed and labeled with strepta-

vidinphycoerythrin (strep-PE), and the signal was amplified using

biotinylated antistreptavidin followed by another round of staining

with strep-PE. These steps were performed on the Affymetrix

fluidics station according to the recommended protocol. Ampli-

fication and microarray hybridization were performed at the Duke

University Microarray Core. Labeled gene chips were scanned

using an Affymetrix Genechip Scanner 7G (Santa Clara, CA).

This array contains 45,101 probe sets to analyze the expression

level of over 39,000 transcripts and variants from over 34,000

mouse genes.

Human microarrays were prepared by first extracting total

RNA from human blood using the PAXgene Blood RNA Kit

(Qiagen, Valencia, CA) according to the manufacturer’s recom-

mended protocol including DNase treatment. RNA quantity and

quality was assessed using the Agilent 2100 Bioanalyzer (Agilent,

Santa Clara, CA). RNA integrity numbers were calculated for all

samples and found to be within tolerance limits. Microarrays were

normalized using RMA. Hybridization and microarray data

collection was then performed at Expression Analysis (Durham,

NC) using the GeneChip Human Genome U133A 2.0 Array

(Affymetrix, Santa Clara, CA) according to the ‘‘Affymetrix

Technical Manual’’. Fluorescent images were detected in a

GeneChip Scanner 3000 and expression data was extracted using

the GeneChip Operating System v 1.1 (Affymetrix). All Gene-

Chips were scaled to a median intensity setting of 500. Murine and

human microarray data have been deposited in the NCBI GEO

(accession # GSE33341).

Deriving the Murine and Human S. aureus Classifiers
Microarray data was analyzed in two steps following the analysis

strategy previously outlined and utilized [19]. First, a Bayesian

sparse factor model was fit to the expression data without regard to

phenotype [31,32]. Second, factors were then used as independent

variables to build a penalized binary regression with variable

selection model [33] trained to identify S. aureus infection. In order

to minimize issues with overfitting, batch was not included in the

regression models. We used a Bayesian penalized regression

technique for variable selection which allows for weighted model

averaging of the resultant models, such that weights are computed

from model fit on the training data [33]. The model averaging

approach incorporates uncertainty in choice of model as well as

regression coefficient. This has been shown to lead to out of

sample predictive accuracies that are superior to penalized

maximum likelihood approaches [34]. Assumptions for this

approach are typical of probit regression including a linear

response surface between predictors and the transformed latent

probability variable. Genes were filtered for analysis using non-

specific filtering for genes with high mean expression and high

variance across samples. Samples with a high number of outlying

genes were removed during the factor analysis. Mice were batched

into discrete experiments with each experiment containing the

relevant controls to avoid confounding. The development and

application of this methodological approach has been previously

described [15,19,31,32,35–42]. Using the same murine experi-

mental data, another classifier was derived to classify methicillin-

resistant vs. methicillin-sensitive S. aureus infection. The method-

ology was otherwise the same as that described above.

We fit a factor model on the human data independently from

the mouse data. The factor model was fit to 9,109 genes after non-

specific filtering to remove unexpressed and uniformly expressed

genes. Z-scores were computed independently for each gene

without regard to experimental design. Subjects with absolute z-

scores greater than 3 in more than 5% of the genes on the array

were identified as outliers and were not used to fit the factor

model. The factor model was trained on the 91 samples (after

removal of three outliers) from three batches of expression data,

and this resulted in 79 factors. These 79 factors were then

projected onto the full data set (including the three subjects

removed for validation) with the goal of distinguishing S. aureus BSI

from healthy controls or E. coli BSI. Leave-one-out cross-validation

was utilized in order to control for overfitting of the penalized

binary regression model. In order to minimize issues with

overfitting, batch was not included in the regression models.

Matlab (Natick, MA, USA) scripts to perform these operations are

available. Nonparametric testing was used to evaluate model

performance (Wilcoxon rank sum for 2-group comparisons or

Kruskal-Wallis for 3 or more-group comparisons) unless otherwise

indicated.

One limitation of this approach is that the marginal significance

of genes within the factor-based classifier cannot be defined.

Instead, gene lists were created to identify genes with differential

expression between specified groups with respect to gene-level and

factor-level analyses. For 3-group comparisons (S. aureus vs. E. coli

vs. Healthy controls) one-way analysis of variance (ANOVA) was

used. For pairwise comparisons, Student’s t-test was used. Results

were statistically significant at p,0.05 after Bonferroni correction

for multiple testing. Spreadsheets of gene/factor lists are provided

as supplemental material.

Creating a Human Ortholog of the Murine S. aureus
Classifier

We used Chip Comparer (http://chipcomparer.genome.duke.

edu/) to identify human orthologs for all possible mouse genes.

When there were multiple orthologs, we preferentially used the

anti-sense target probes that shared the fewest probes with other

genes as identified by the probe label. Chip Comparer identified

17,600 probe sets on the Affymetrix GeneChip Human Genome

U133A 2.0 Array that have orthologs in the Affymetrix GeneChip

Mouse Genome 430 2.0 Array. Factor scores from the mouse

factor model were estimated using this set of 17,600 genes as

follows: Given a matrix of expression values, X, and a factor model

X = BF+e, we first replaced missing values by mean expression

levels for those genes. Step 2: Inverse regression was utilized to

compute F*, to estimate the factor scores. Step 3: We estimated X

by computing BF* and replaced missing values with the

corresponding values from this matrix. Steps 2 and 3 were then

repeated until the estimates for the missing values converged.

External Validation in an Independent Cohort
To externally validate the murine and human S. aureus

classifiers, we utilized publically available expression data from a

Gene Expression Classifier for S. aureus Infection
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pediatric cohort with S. aureus infection and healthy controls [18].

Hospitalized children with invasive S. aureus infection were

enrolled with sample collection occurring after microbiological

confirmation. Healthy controls included children undergoing

elective surgical procedures and at healthy outpatient clinic visits.

This dataset includes multiple expression platforms. For the

purposes of consistency, we only included subjects with Affymetrix

U133A data yielding 46 S. aureus-infected patients and 10 healthy

controls. Given the absence of subjects with E. coli infection in the

validation cohort, we derived new murine and human S. aureus

classifiers that excluded animals or subjects with E. coli infection.

These classifiers were derived and then projected onto the 56-

sample validation cohort as described heretofore.

Heat Map Generation
In order to generate heat maps of gene expression, we first

turned to the factors from the murine and human S. aureus

classifiers. Probes from each factor were identified and tested for

differential expression in a one-way ANOVA. Probes with

significantly different levels of expression after Bonferroni correc-

tion were retained. For the murine data, there were thousands of

probes (,1000–3000, typically) meeting these criteria. Conse-

quently, the p-values were sorted in ascending order and the 100

most significant probes from each factor were retained. Duplicate

probes across the factors were removed. The human expression

heat map was created in the same manner except all significant

probes are presented considering there were fewer factors and

genes in the human S. aureus classifier as compared to the murine

classifier. Heat maps were generated using Matlab (Natick, MA,

USA).

Pathway Analysis
Pathway analysis for functional annotation of genes was

performed with the MetaCore tool of the GeneGO package

(GeneGo, Inc., St. Joseph, MI, USA) (http://www.genego.com).

P-values were assigned to pathways based on the number of genes

mapping to a particular pathway relative to the total number of

genes in that pathway. Statistically significant pathways were

defined as a p-value ,0.05 (False Discovery Rate [FDR]-adjusted)

based on hypergeometric distributions [19].

Results

Murine Sepsis due to S. aureus and E. coli
Clinically relevant S. aureus infections in humans typically arise

from a primary focus with secondary dissemination. To mimic this

process, mice were inoculated via the intraperitoneal (IP) route

[25]. Infection-susceptible and infection-resistant inbred mouse

strains (A/J and C57BL/6J, respectively) [43,44] were inoculated

with S. aureus (Sanger476) or E. coli (O18:K1:H7) (n = 5 per mouse

strain and bacterial species). A survival analysis was carried out to

determine the optimal duration of infection for subsequent

experiments (Figure S1A). Based on this data, A/J and

C57BL/6J mice were infected with S. aureus (sacrificed at t = 0,

2, 4, 6, and 12 hours post-infection; n = 10 animals/time point) or

E. coli (t = 0, 2, 6, 12, and 24 hours post-infection; n = 10 animals/

time point). The effect of infection status, bacterial pathogen, and

duration of infection on global patterns of gene expression was

assessed using principal component analysis (PCA) (Partek

Genomics Suite) (Figure S1B-D) [45]. Gene expression patterns

clustered by infection status and by pathogen (S. aureus vs. E. coli).

Animals infected with S. aureus demonstrated a time-dependent

change in gene expression that first manifested at two hours, by

which time bacteremia has occurred [46]. This pattern remained

stable through 12 hours, when most animals have succumbed to

sepsis. E. coli-infected animals did not reveal this time-dependent

progression based on the time points sampled, but had a distinctly

different pattern of gene expression that was evident at 2 hours

and persisted through 24 hours following infection. A heat map

depicting the time-dependent nature of these gene expression

changes is presented in Figure S2.

Peripheral Blood Gene Expression Signatures Classify S.
aureus-infected from Uninfected Mice

To create a host gene expression-based classifier for S. aureus

infection, mice from a variety of experimental conditions were

utilized (n = 187 total). Seven strains of inbred mice were

challenged with 4 S. aureus genetic backgrounds via IP inoculation

and sacrificed at various time points as described in Experimental

Procedures. The comparator group for model derivation included

50 A/J or C57BL/6J mice inoculated with E. coli (O18:K1:H7) as

well as 54 non-inoculated mice. Whole blood mRNA was used to

generate microarray expression data. A list of differentially

expressed genes is presented in Table S1. Figure S3 presents

the number of overlapping genes in each pairwise comparison.

Patterns of co-expressing genes were defined using sparse latent

factor regression in an unsupervised manner (i.e. without

knowledge of the source animal’s infection status) [31,32]. Factor

models are a well-known technique for describing correlation

structure in high dimension, low sample size data sets. Our sparse

latent factor model works by collecting genes that are highly

correlated into groups. Predictive models are then built from the

latent factors – vectors that describe the aggregate behavior of the

group. Subsequently, these factors served as independent variables

in a variable selection, binary regression model to distinguish

animals with and without S. aureus infection. This approach was

taken in lieu of using individual gene expression changes for

several reasons. A given gene with biological relevance may be

differentially expressed in response to S. aureus infection but not to

the degree that would meet statistical significance. Considering this

altered gene expression exists amid a network of other such

changes, the collective perturbations in that particular pathway

would be more easily detected using factor analysis. Furthermore,

changes across multiple biological pathways will be reflected across

multiple factors. These can then be collectively harnessed for their

diagnostic potential using a binary regression model.

Thirty factors were identified, of which 16 demonstrated a

pattern of expression significantly associated with infection status

(mFactors 15, 7, 23, 13, 9, 29, 28, 2, 17, 16, 21, 1, 5, 4, 26, and 19

in order of greatest significance; ANOVA; p,0.0017 for S. aureus

vs. control vs. E. coli after Bonferroni correction; Figure S4).

These 30 factors were fitted into a penalized binary regression

model, termed the ‘‘murine S. aureus classifier’’. The best

performing model, as defined by the model with the largest log-

likelihood value, included four factors (mFactors 7, 15, 23, and 26).

Other models may be just as adequate, but we are only referring to

this ‘‘top’’ model. Leave-one-out cross-validation was used to

control overfitting and to estimate the model’s performance in

subgroups of experimental conditions as described below (mouse

strain, S. aureus genetic background, duration of infection, and

bacterial species [S. aureus vs. E. coli]). A schematic of the derivation

and validation experiments is depicted in Figure 1.

The ability of the murine-derived host gene expression classifier

to identify S. aureus infection was tested in 7 inbred mouse strains of

varying infection susceptibilities [43]. In all 7 strains, the murine S.

aureus classifier accurately differentiated S. aureus-infected from

control mice (p = 4.89610216; AUC = 0.9964) (Figure 2A). The

ability to characterize S. aureus infection persisted when A/J mice

Gene Expression Classifier for S. aureus Infection
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(infection-susceptible) were challenged with four different S. aureus

backgrounds: USA100 (the predominant US nosocomial methi-

cillin resistant S. aureus [MRSA] genetic background); USA300 (the

predominant US community-acquired MRSA genetic back-

ground); USA400 (MW2); and Sanger 476 (a methicillin-

susceptible genetic background) (p = 1.92610210 vs. control mice;

AUC = 1.00) (Figure 2B). Furthermore, the murine S. aureus

classifier consistently discriminated S. aureus infected mice from

controls at 2, 4, 6, and 12 hours post-inoculation (p = 4.41610216

vs. uninfected mice; AUC 1.00) (Figure 2C). This time interval

was selected because two hours is the earliest time point at which

S. aureus can be cultured from blood; while 12 hours was the point

at which animals began to die of S. aureus sepsis (Figure S1A). In

summary, a classifier based on murine-derived host gene

expression accurately identified the presence of S. aureus infection

in mice under a variety of host, pathogen, and temporal

conditions.

Murine S. aureus Classifier Distinguishes S. aureus-
infected from E. coli-infected Mice

Next, we determined whether the murine S. aureus classifier

could differentiate S. aureus from E. coli infection. Both the

infection-susceptible A/J and infection-resistant C57BL/6J strains

were infected with either S. aureus (Sanger 476) or E. coli

(O18:K1:H7). Animals were sacrificed at 2, 6, and 12 hours after

inoculation. The murine S. aureus classifier correctly identified 50

of 53 (94.3%) animals as either infected with S. aureus or not at 2

hours (50/53), 100% of animals at 6 hours (n = 20), and 96.7% of

animals at 12 hours (29/30) (Figure 3A). This corresponded to an

overall p-value of 7.94610226 by Kruskal-Wallis test (comparing

S. aureus vs. E. coli vs. Healthy controls) with an AUC of 0.9935

across all time points. Next, the murine S. aureus classifier was

independently validated in outbred CD-1 mice with S. aureus

infection (Sanger 476 or USA300), E. coli infection (O18:K1:H7),

or uninfected controls (10 animals per condition). The murine-

derived S. aureus model accurately classified 95% of all animals

where the reference standard was the known experimental

condition (38/40; p = 1.4761026; 90% sensitivity and 100%

specificity; AUC = 0.9775) (Figure 3B).

The murine S. aureus classifier was generated to identify S. aureus

infection within a population including both healthy and E. coli-

infected animals. However, it is possible this classifier is primarily

distinguishing ‘‘sick’’ from ‘‘not-sick’’ phenotypes. In such a case, it

would be expected that the classifier would still differentiate

animals with E. coli infection from uninfected controls. However,

this was not observed (AUC 0.5089; p = 0.8785) demonstrating the

Figure 1. Schematic of derivation and validation cohorts. The Murine Derivation Cohort includes S. aureus infection (n = 83), healthy control
mice (n = 54), and E. coli infection (n = 50). It served as a validation cohort to assess Mouse Strain Effect, S. aureus Genetic Background Effect, Time
Course, and to compare S. aureus vs. E. coli and E. coli vs. Healthy. The murine S. aureus classifier was externally validated in Outbred Mice (n = 30) and
the CAPSOD Human Cohort. The CAPSOD Human Cohort includes S. aureus BSI (n = 32), healthy volunteers (n = 43), and E. coli BSI (n = 19). It served as
a validation cohort to compare S. aureus vs. Healthy, S. aureus vs. E. coli, and E. coli vs. Healthy. Model derivation and validation using the entire cohort
of animals or humans is depicted by the blue outline and arrows. An independent classifier was generated using only subjects with S. aureus or E. coli
BSI (green outline). This classifier was validated using leave one out cross validation (green arrow). The Human Pediatric Cohort (n = 46 S. aureus, 10
Healthy) used for external validation does not include patients with E. coli infection. Therefore, S. aureus classifiers were generated from the murine
and CAPSOD cohorts that excluded E. coli data (red outline and thick red arrow). The Human Pediatric Cohort was used to derive a Human S. aureus
vs. Healthy classifier which was validated in the S. aureus-infected and Healthy populations within the murine and CAPSOD human cohorts (thin red
arrow).
doi:10.1371/journal.pone.0048979.g001
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specificity of this classifier for S. aureus infection. Thus, a murine-

derived host gene expression classifier accurately distinguished S.

aureus-infected from E. coli-infected or uninfected mice across

multiple host strains, pathogens, post-infection time points, and

was validated in outbred mice.

Given this ability to discriminate infection due to different

bacterial species, we further explored the potential for a factor-

based classifier to distinguish infection due to methicillin-resistant

(MRSA) or methicillin-sensitive S. aureus (MSSA), which have been

shown to differ in their pathogenicity and virulence. The same 30

factors described above were fitted into a penalized binary

regression model with the specific aim of differentiating MRSA

from MSSA infection. Leave-one-out cross-validation was used to

control overfitting and to estimate the model’s performance in a

population of 19 MRSA-infected and 84 MSSA-infected mice

(Figure S5). Despite some overlap, this classifier accurately

differentiated infection due to MRSA or MSSA (AUC 0.8396;

p = 4.1461026). Genes discriminating infection due to MRSA or

MSSA that remained significant after adjusting for multiple tests

are presented in Table S2.

Human S. aureus Classifier
We next determined whether peripheral blood gene expression

in humans could yield a classifier for S. aureus BSI. Peripheral

whole blood mRNA from 32 patients with S. aureus BSI, 19

patients with E. coli BSI, and 43 healthy control subjects were used

Figure 2. Murine S. aureus classifier accurately identifies S. aureus infection under a variety of conditions. Conditions represented
include different murine hosts (A), bacterial genetic backgrounds (B), and time from inoculation (C). Animals with S. aureus infection are depicted by a
red ‘‘x’’. Uninfected control mice are depicted by black circles.
doi:10.1371/journal.pone.0048979.g002

Figure 3. The murine S. aureus classifier differentiates S. aureus from E. coli infection. (A) Inbred mice were tested under three conditions:
uninfected controls (black circles), S. aureus infected (red ‘‘x’’), and E. coli infected (blue triangles). The y-axis represents the predicted probability that
a given animal was infected with S. aureus. (B) The murine S. aureus classifier is validated in outbred CD-1 mice where it differentiates S. aureus
infection from E. coli infection and uninfected controls.
doi:10.1371/journal.pone.0048979.g003
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to generate microarray data (Table 1). A list of differentially

expressed genes is presented in Table S3. Figure S6 presents the

number of overlapping genes in each pairwise comparison.

Seventy-nine factors were defined and fitted into a linear

regression model trained to identify the presence of S. aureus

BSI. Although 17 factors were independently associated with S.

aureus BSI (Figure S7), only two factors remained in the best-

performing model (hFactors 20 and 74). Similar to the murine S.

aureus classifier, the human S. aureus classifier was generated blind

to microbiological diagnosis in an unsupervised manner. Gender

was controlled for in the model’s derivation considering the

predilection for female sex in E. coli BSI (Table 2). We then

estimated the model’s performance in phenotypic subgroups using

leave-one-out cross-validation. The classifier accurately differenti-

ated those with S. aureus BSI from healthy controls (72/75 correctly

classified; AUC = 0.9898; p = 5.41610213) (Figure 4A). The

human S. aureus classifier also correctly distinguished S. aureus

from E. coli BSI in 82% (42/51) of cases (AUC = 0.8372;

p = 6.7761024). When the human S. aureus classifier was applied

to subjects with E. coli BSI vs. healthy controls, we observed an

intermediate level of discrimination (56/62 correctly classified;

AUC 0.9229; p = 1.3861027). This suggests that the human

classifier is partially pathogen specific since E. coli BSI could also

be distinguished from healthy controls but not with the same

degree of accuracy as S. aureus BSI. A heat map depicting these

gene expression changes is presented in Figure S8.

In the human S. aureus classifier described above, it is the

inclusion of healthy controls that drives the discrimination from S.

aureus BSI. Considering the clinical importance of differentiating

Gram-positive from Gram-negative infections, rather than sick vs.

healthy, we created a penalized binary regression model with the

specific aim of differentiating human S. aureus (n = 32) from E. coli

(n = 19) BSI. In this cohort, 52 factors were identified (different

from the 79 factors identified when Healthy was included) of

which only hFactor 40 remained in the top performing model after

controlling for gender. Using leave-one-out cross-validation

(Figure 4B), this model had a sensitivity of 62.5% (20/32 S.

aureus BSIs correctly classified) but a specificity of 94.7% (18/19 E.

coli BSIs correctly classified). This corresponds to an AUC of

0.8503 (p = 3.4761025).

A Murine S. aureus Classifier Identifies S. aureus Infection
in Humans

We then determined whether the murine S. aureus classifier

could identify S. aureus BSI in humans. To accomplish this, the

murine S. aureus classifier was projected onto human gene

expression data. Specifically, Chip Comparer (http://

chipcomparer.genome.duke.edu/) provided a modified represen-

tation of the Affymetrix Mouse Genome 430 2.0 Array that only

included orthologs of transcripts represented on the Affymetrix

Human Genome U133A 2.0 Array. This resulted in a murine S.

aureus classifier consisting only of genes with human orthologs

(68.6% of the total array representation). We then evaluated this

classifier in our human cohort. To account for potential species-

specific variation in gene expression, predicted probabilities were

plotted on a logit rather than a probabilistic scale. Using this

murine S. aureus classifier, human patients with S. aureus BSI were

distinguished from healthy controls (AUC = 0.9484;

p = 4.00610211) (Figure 5). Thus, the host response to S. aureus

infection was sufficiently conserved that a predictive model

generated in one species (Mus musculus) identified S. aureus BSI in

another (Homo sapiens). However, the murine-derived S. aureus

classifier did not differentiate between S. aureus and E. coli BSI in

humans (AUC = 0.5905; p = 0.2883).

Validation of Murine and Human Classifiers in an
Independent Pediatric Population

We externally validated the murine and human S. aureus

classifiers in an independent human cohort [18]. This validation

cohort consisted of pediatric patients hospitalized due to invasive

S. aureus infection (n = 46) and healthy controls (n = 10) who had

gene expression data generated on a compatible platform (U133A

array) with that used in this study. This cohort did not enroll

children with E. coli infections. For this reason, we excluded E. coli

infection from both classifiers. New murine and human S. aureus

classifiers were developed in the same manner described above but

without E. coli-related expression data. This modified murine S.

aureus classifier was comprised of mFactors 7, 15, and 26 but not

mFactor23. The modified human S. aureus classifier only contained

hFactor4. Both the murine and human S. aureus classifiers

differentiated children with S. aureus infection from healthy

controls in this validation cohort (murine classifier

AUC = 0.9522, p-value = 9.0361026 [Figure 6A]; human classi-

Figure 4. Performance of the human S. aureus classifier. (A) The
human S. aureus classifier differentiates S. aureus BSI from both
uninfected controls and E. coli BSI. (B) A separate classifier was
generated using only S. aureus and E. coli-infected human subjects and
tested using leave-one-out cross-validation.
doi:10.1371/journal.pone.0048979.g004
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Table 1. Description of human subjects used to generate a S. aureus classifier.

Subject Subject Category Race Age Gender Source of Infection Positive Culture Sources WBC PMN %

S1 S. aureus White 82 Male Endocarditis Blood 23.6 96.4

S2 S. aureus White 70 Female Skin Blood, Wound, Operative cultures 11.6 N/Aa

S3 S. aureus Black 41 Male Catheterb Blood 14.8 N/A

S4 S. aureus White 81 Male Skin Blood, Pleural fluid 16.2 N/A

S5 S. aureus White 81 Male Bone Blood 17.3 N/A

S6 S. aureus Black 55 Male Catheter Blood, Vascular catheter site 14.3 89.8

S7 S. aureus Black 69 Female Catheter Blood 13 N/A

S8 S. aureus Black 44 Female Catheter Blood 13 90

S9 S. aureus Black 51 Male Skin Blood 6.9 73

S10 S. aureus Black 47 Male Skin Blood 12 87

S11 S. aureus White 36 Female Endocarditis Blood 22.7 85

S12 S. aureus White 54 Male Bone Blood 9.8 88

S13 S. aureus Black 55 Male Bone Blood, Skin, Synovial fluid 18.3 87

S14 S. aureus Black 42 Male Unknown Blood, Urine, Sputum 7.6 82

S15 S. aureus Black 52 Male Bone Blood 10.9 79

S16 S. aureus Black 55 Male Bone Blood, Skin 28.6 95

S17 S. aureus White 52 Male Skin Blood, Skin 17.9 84

S18 S. aureus N/A 51 Female Lung Blood 19.8 78

S19 c S. aureus Black 40 Male Skin Blood, Skin 14.7 93

S20 S. aureus White 60 Male Skin Blood N/A N/A

S21 S. aureus Black 59 Male Catheter Blood 7.5 75.5

S22 S. aureus Black 58 Male Bone Blood 27.9 N/A

S23 S. aureus Black 77 Male Urinary tract Blood, Urine, Skin 9.8 80.3

S24 S. aureus Black 91 Male Bone Blood 15.1 93

S25 S. aureus White 75 Female Catheter Blood 6 92

S26 S. aureus Black 58 Male Catheter Blood 23.9 87

S27 S. aureus Black 24 Male Urinary Tract Blood, Urine, Sputum 16 76.4

S28 S. aureus White 74 Male Skin Blood, Abscess 33.2 89

S29 c S. aureus Black 70 Male Skin Blood 19.6 82

S30 S. aureus White 61 Male Bone/CNSd Blood, Abscess 10.4 86

S31 S. aureus, S. pneumoniae Black 52 Male Lung Blood (S. aureus); Antigen test (S.
pneumoniae)

6.1 93

S32 S. aureus Black 38 Male Endocarditis Blood 16.8 94

E1 E. coli Black 43 Female Urinary tract Blood, Urine 32.6 87.3

E2 E. coli White 49 Female Urinary tract Blood 14 92.4

E3 E. coli Black 44 Female Urinary tract Blood, Urine 15.7 N/A

E4 E. coli White 70 Female Urinary tract Blood, Urine 20.7 88

E5 E. coli Black 40 Male Urinary tract Blood, Urine 15 83

E6 E. coli White 91 Female Urinary tract Blood, Urine 5.6 N/A

E7 E. coli Black 25 Female Urinary tract Blood, Urine 11.1 88

E8 E. coli White 62 Male Urinary tract Blood, Urine 13.3 N/A

E9 E. coli Black 70 Male Urinary tract Blood 2.4 94

E10 E. coli Black 32 Female Urinary tract Blood, Urine 25.1 N/A

E11 E. coli White 54 Female Urinary tract Blood, Urine 10.8 90

E12 E. coli White 74 Female Urinary tract Blood, Urine 7.3 97

E13 E. coli Black 79 Female Lung Blood 16.9 77

E14 E. coli Black 41 Male Urinary tract Blood, Urine 14.3 77.6

E15 E. coli White 65 Male Urinary tract Blood, Urine 21.6 85

E16 E. coli White 63 Female Urinary tract Blood, Urine 8.5 N/A

E17 E. coli White 81 Female Urinary tract Blood, Urine 14.1 86.5
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Table 1. Cont.

Subject Subject Category Race Age Gender Source of Infection Positive Culture Sources WBC PMN %

E18 E. coli Black 69 Female Urinary tract Blood, Urine 11.1 67.6

E19 E. coli White 55 Female Urinary tract Blood, Urine 7.2 87.5

H1 Healthy Black 27 Male

H2 Healthy White 24 Female

H3 Healthy White 29 Female

H4 Healthy White 26 Male

H5 Healthy Asian 30 Male

H6 Healthy Black 24 Male

H7 Healthy White N/A Male

H8 Healthy Asian 24 Male

H9 Healthy Asian 23 Male

H10 Healthy White 50 Female

H11 Healthy White 23 Female

H12 Healthy White 24 Female

H13 Healthy White 44 Male

H14 Healthy White 24 Female

H15 Healthy White 28 Female

H16 Healthy White 26 Male

H17 Healthy Asian 30 Female

H18 Healthy Black 26 Male

H19 Healthy White 25 Male

H20 Healthy White 24 Male

H21 Healthy White 24 Male

H22 Healthy Asian 25 Female

H23 Healthy Black 24 Female

H24 Healthy White 43 Female

H25 Healthy White 26 Female

H26 Healthy Black 59 Male

H27 Healthy Black 25 Female

H28 Healthy White 24 Male

H29 Healthy White 25 Male

H30 Healthy White 26 Male

H31 Healthy White 24 Male

H32 Healthy White 26 Male

H33 Healthy N/A 25 Male

H34 Healthy White 53 Female

H35 Healthy Black 45 Female

H36 Healthy White 23 Male

H37 Healthy White 26 Female

H38 Healthy White 27 Male

H39 Healthy Asian 43 Female

H40 Healthy Black 32 Female

H41 Healthy N/A 25 Female

H42 Healthy Black 43 Female

H43 Healthy White N/A Female

aN/A – Not available.
bCatheter refers to vascular catheters.
cGene expression data for S19 and S29 was generated from blood drawn on the second hospital day. Blood drawn on the day of admission was otherwise used for all
other infected subjects.
dThis subject had vertebral osteomyelitis associated with an epidural abscess.
doi:10.1371/journal.pone.0048979.t001

Gene Expression Classifier for S. aureus Infection

PLOS ONE | www.plosone.org 10 January 2013 | Volume 8 | Issue 1 | e48979



fier AUC 0.9217, p-value 3.4861025 [Figure 6B]). The converse

was also true. A S. aureus classifier trained on this independent

pediatric cohort accurately discriminated S. aureus infection from

healthy controls in our CAPSOD human cohort (70/75 correctly

classified; AUC = 0.9775, p-value = 2.03610212) and murine

cohort (123/137 correctly classified; AUC = 0.9255;

p = 4.56610217).

S. aureus Infection Induces Similar Host Gene-expression
Responses in Mouse and Human

Pairwise comparisons were performed to identify genes with

significantly different levels of expression (after Bonferroni

correction). Comparisons included S. aureus infection vs. Healthy,

E. coli infection vs. Healthy, and S. aureus vs. E. coli infection in

mice and humans (Tables S1 and S3). Genes from each pairing

were entered into the GeneGo pathway map database. The 50

most significant biological pathways arising from the pairwise

comparisons are presented in Table S4. The genes represented

within common pathways are presented in Table S5. A similar

number of pathways overlapped between the murine and human

responses to S. aureus (12 of the top 50) and E. coli (14 of the top 50)

infection. Most of the overlapping pathways in the murine and

human responses to both S. aureus and E. coli belonged to the broad

category of immune response including CD28, ICOS, and the

MEF2 pathway. Cytoskeletal remodeling (TGF and WNT) and

apoptosis were also common to both infection types in mice and

humans. Some pathways were highly significant in the S. aureus vs.

Healthy comparison but not manifest in E. coli vs. Healthy such as

NF-kB-associated pathways; the CD40 immune response path-

way; and clathrin-coated vesicle transport. As expected, these

pathways were also differentially manifest in the direct comparison

of murine S. aureus and E. coli infection. We did not identify any

statistically significant probes that distinguished human S. aureus

from E. coli BSI. One probe, corresponding to the F2RL3 gene,

nearly met this statistical cutoff (p-value 5.9461026 with a cutoff of

2.2461026). F2RL3 encodes proteinase-activated receptor 4 [47].

This molecule is a G-protein coupled receptor activated by

thrombin and trypsin but has not previously been implicated in the

sepsis or immune response. It is expressed in multiple tissues with

high levels in the lung, pancreas, thyroid, testis, and small intestine

but not peripheral blood or lymphoid tissues [47].

Discussion

Early diagnostic strategies for S. aureus BSI could improve

patient care by reducing the time required to establish the

diagnosis and provide appropriate treatment while avoiding

unnecessary anti-MRSA antibiotics. The current investigation

contributes to this goal through three key findings. First, S. aureus

infection induces conserved host gene expression responses in mice

that can differentiate from E. coli-infected or uninfected mice. This

discovery was consistent and robust across multiple inbred mouse

strains, S. aureus genetic backgrounds, time points, and was

validated in outbred mice. The validation step strengthens

generalizability and is an important improvement over previous

murine gene-expression based classifiers that were developed and

tested in only a single inbred mouse strain including the fields of

infectious diseases [19,48,49]; cancer progression [50,51]; and

aging [52,53]. Furthermore, this murine predictor was specific for

S. aureus infection and not simply a marker of illness based on the

observation that mice with E. coli sepsis could not be distinguished

Table 2. Characteristics of human subjects used for S. aureus classifier derivation.

S. aureus (n = 32) Gram-negative (n = 19) Healthy (n = 43)

Age in years, mean (range) 58 (24–91) 58 (25–91) 30 (23–59)

Gender, n (%)

Female 6 (19) 14 (74) 21 (49)

Male 26 (81) 5 (26) 22 (51)

Race, n (%)

Black 20 (63) 9 (47) 9 (21)

White 11 (34) 10 (53) 26 (60)

Asian 0 0 6 (14)

Unknown 1 (3) 0 2 (5)

Dialysis, n (%) 12 (38) 0 0

Diabetes, n (%) 13 (41) 3 (16) 0

Immunosuppression, n (%) 2 (6) 2 (11) 0

doi:10.1371/journal.pone.0048979.t002

Figure 5. Projecting the mouse S. aureus classifier onto human
subjects. The murine S. aureus classifier identifies humans with S.
aureus BSI, but does not differentiate S. aureus from E. coli BSI.
doi:10.1371/journal.pone.0048979.g005
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from healthy, uninfected animals. The murine S. aureus classifier

performed equally well at multiple time points despite progression

of illness lending additional support to the specificity of this

classifier. Second, human-derived host gene expression signatures

differentiated S. aureus BSI from E. coli BSI or uninfected controls.

In contrast to the murine-based classifier, the human-based model

was less pathogen specific but still provided a significant degree of

differentiation between S. aureus and E. coli BSI. Finally, the

responses to S. aureus infection are highly conserved at the

transcriptional and pathway level. This conserved response

allowed us to validate the murine- and human-derived S. aureus

classifiers in an independent cohort of S. aureus-infected patients.

Previous efforts to identify a discriminatory host gene expression

signature for Gram-positive versus Gram-negative infections have

yielded inconsistent results. This is likely due to the observation

that transcriptional data derived from complex phenotypes such as

infection do not produce just one predictive gene set, but rather

generate multiple gene sets associated with the phenotype in

question [54]. Some studies report a common pattern of host gene

expression [55–57], whereas others have identified different

expression profiles [8–10,58]. In the current investigation, we

utilized well-established methodologies [15,19,31,36,38–41] to

derive predictors for S. aureus infection in both mice and humans

from gene expression data. A key component of this methodology

was a dimensional reduction step generating sets of co-expressed

genes, termed ‘‘factors’’. We observed that multiple, individual

factors differentiated between various infection states although

none performed universally well. For example, mFactor15 was

associated with the lowest overall p-value during model genera-

tion. The AUC was 0.9587 for S. aureus vs. uninfected control mice

but only 0.7942 for S. aureus vs. E. coli. In contrast, mFactor23 had

an AUC of 0.9800 for S. aureus vs. E. coli but an AUC of 0.5926 for

Figure 6. Validation in an independent human cohort [18]. (A) The murine S. aureus classifier differentiates between S. aureus infection and
healthy. (B) The human S. aureus classifier differentiates between S. aureus infection and healthy.
doi:10.1371/journal.pone.0048979.g006
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S. aureus vs. uninfected control mice. In order to generate a more

robust classifier, factors were used as independent variables to

generate a binary regression model. Factor models are an excellent

technique for estimating correlation structure in very high

dimensional data sets. This comprised the second step in

generating the S. aureus predictors. It was only by including all

factors to build the classifier that we could validate the model in

the broadest set of conditions including different bacterial

pathogens. However, because factors are typically made up of

many genes, it is difficult to estimate the marginal effect of

removing single genes from predictors. As such, it can be

challenging to move from predictors based on factors to predictors

based on small gene subsets. Although redundancy among the

genes in a molecular classifier is expected and is a potential

limitation, such redundancy can also improve robustness for a

specific phenotype [54] as is likely to be the case in discriminating

S. aureus from E. coli infection in mice. Comparisons at the

individual gene level, as with pairwise comparisons, are likely to

reveal differences in relatively simple biological responses. In

contrast, dimension reduction with factor modeling as utilized in

this study incorporates differences across multiple pathways,

allowing for the detection of changes in a more complex

pathobiology. Additionally, our factor model construction does

not incorporate known biological pathways. This leads to gene

groupings that are sometimes difficult to interpret. The advantage

of the approach is the extreme dimension reduction which allows

for discovery and cross-validation on very small data sets. This is

one possible explanation for why the human S. aureus classifier

differentiated S. aureus from E. coli whereas no genes met the

threshold for differential expression after Bonferroni correction in

a pairwise comparison between these two patient populations. The

strength of this approach is offset by the possibility that smaller or

transient changes in gene expression might be missed. It should be

noted that the classifiers described in this study are not intended to

be of clinical grade, which would require a more restrictive set of

discriminating genes. Furthermore, there are likely many combi-

nations of genes and factors that would perform similarly to that

described here. This study presents findings related to the best

performing classifier using the described methodologies. Defining

the smallest, non-redundant set of genes that retains adequate

discriminating power would be a vital next step in generating a

clinically-useful diagnostic. In addition, any host response-based

diagnostic requires validation across a range of clinical states.

Immunocompromise is a particular condition in which it cannot

be assumed the host immune response follows the paradigms

identified here.

The murine model has been effectively used to gain insights into

the pathophysiology of sepsis in general and S. aureus in particular

[43,44]. Murine-derived gene expression signatures have also been

successfully translated to non-infectious human conditions such as

radiation exposure and breast cancer [24,59,60]. Here, we

describe the robust performance of a murine-derived S. aureus

classifier in both mice and humans and also offer several lines of

evidence supporting a partially conserved host response to S. aureus

infection in both host species. First, the murine-based predictor

could differentiate human S. aureus BSI from uninfected controls.

Second, the genetic pathways were highly conserved. For example,

most of the relevant murine pathways were also significantly

associated with S. aureus BSI in humans. Finally, the murine-based

predictor was highly accurate in classifying S. aureus infection in an

independent human cohort.

Despite the robust performance of the murine classifier when

applied to a human population, the ideal animal model for human

sepsis remains elusive [61–63]. For example, virtually no murine-

based sepsis studies have been replicated in patients [64,65]. Other

sepsis studies in mice and humans yield discordant results. For

example, the impact of TNF-a receptor therapy on septic mice

[66] and humans [67] yielded contradictory results. In fact, more

than 60 incongruities between murine and human immune

systems have been recognized many of which involve host-

pathogen interactions [68,69]. Our results are consistent with

these earlier observations. For example, we encountered inconsis-

tences between murine and human responses to S. aureus such that

a minority (12) of the top 50 pathways overlapped between the two

species. Moreover, the human response to S. aureus when

compared to E. coli was differentiated by only one gene, F2RL3,

which nearly reached the threshold for statistical significance. This

is in contrast to the many genes identified differentiating the

murine response to S. aureus and E. coli infection although F2RL3 is

notably absent from this list. These host species-specific differences

in sepsis, as well as infection-specific characteristics such as

anatomic site of infection (e.g. genitourinary tract for E. coli vs.

skin/soft tissue for S. aureus) limit our ability to apply knowledge

gained from animal sepsis models to humans. It is also worth

noting that batch effects and their correction may introduce bias in

the form of false positives in the gene selection output [54].

However, this effect would be equally distributed among the S.

aureus infected, E. coli infected, and healthy subjects. Finally, the

ability to distinguish bacterial sepsis from healthy is expectedly

easier than the finer distinction between two offending bacterial

pathogens. It is therefore not surprising that the murine S. aureus

predictor did not differentiate S. aureus from E. coli infection in the

human cohort. Comorbid disease such as diabetes or end-stage

renal failure, which we observed in a minority of the infected

human cohort, could be confounding the analysis and driving the

differentiation between healthy human controls and those with

infection (S. aureus or E. coli BSI). Without controlling for comorbid

disease, such a confounding effect cannot be excluded. However,

the human S. aureus classifier performed exceptionally well in

differentiating infected individuals from healthy controls even in

those patients without comorbid disease. Furthermore, the murine

classifier (derived from mice without comorbid disease) could still

differentiate infected human subjects from the healthy human

cohort. These factors make it unlikely that comorbid disease is

playing a significant role in the analysis although future attempts at

deriving a gene-expression-based classifier should make accom-

modations for the possible confounding effect of comorbid disease.

Gene expression changes in peripheral blood cells drive the

derivation of both the murine and human S. aureus classifiers. It is

conceivable these gene expression changes are reflective of

transcript abundance driven by myeloid cell lineage expansions

and are not pathogen or infection specific. However, previously

published data and work presented here suggest this is not the

case. For example, Ardura et al. found no differences in the

absolute numbers of total B and T cells in patients with S. aureus

infection compared to healthy controls [18]. Yet the abundance of

lymphocyte-specific transcripts was significantly reduced. In

contrast, expansion of the myeloid lineage was associated with

high levels of expression among genes associated with neutrophil

function. A similar independence between lymphocyte counts and

differential gene expression within this lineage was observed in an

independent pediatric sepsis cohort [70]. In another example,

transcript abundance due to cell lineage expansions was not the

primary factor in the development of a tuberculosis-specific gene

expression signature [71]. Rather, it is changes in cellular

composition and altered gene expression that drive such signa-

tures. The data presented here also indicates that the S. aureus

classifiers are not being driven by lineage-specific transcript
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abundance. Specifically, the total leukocyte count and cell lineage

distribution (based on routine automated differential measure-

ments) were not different between patients with S. aureus infection

and E. coli infection (15.76109/L with 86.2% neutrophils vs.

14.16109/L with 85.8% neutrophils, respectively). However, the

human S. aureus classifier was still able to differentiate infection due

to the two pathogens. The murine S. aureus classifier was highly

successful in differentiating S. aureus infection from healthy and

from E. coli infection yet was unable to differentiate E. coli from

healthy. This result would not be expected if transcript abundance

was driving the derivation of the classifier.

The overlap we observed in the gene expression response to S.

aureus infection in mouse and human was also consistent with

published studies. NF-kB signaling pathways have been identified

as a critical component of the murine response to infection [72],

which was mirrored in the murine and human data presented

here. Similar gene expression-based analyses of the human

response to bacterial infection have also revealed the importance

of other biological pathways including MHC class I and II antigen

presentation, immunological synapse formation, TGF-b receptor

signaling, TGF and WNT-dependent cytoskeleton remodeling,

and T-cell receptor signaling [10,18,73], all of which were

significantly associated with S. aureus infection in this study. Hence,

mice and humans utilize many of the same or overlapping

pathways in response to bacterial sepsis supporting the potential

utility of murine-based diagnostics for human disease.

S. aureus continues to evolve as a pathogen and leads to a

disproportionate burden of sepsis morbidity and mortality. This

study takes significant steps forward on multiple levels in the

ongoing effort to understand this pathogen; the host response to it;

and identify new diagnostic and therapeutic avenues. We describe

a potential diagnostic modality capable of differentiating infection

from health across species. More importantly, host gene expression

classifiers can differentiate infection due to S. aureus from that of E.

coli but this effect is less pronounced in the complex human host.

The approach described here also affords great insight into the

conserved and disparate pathways utilized by mice and humans in

response to these infections. Not only have we provided evidence

to support the paradigm shift in how we think about diagnostics,

but we have also identified new areas for research into the

pathways that subserve sepsis pathophysiology.
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Figure S1 Bacterial challenge experiments. (A) Survival

curves for A/J and C57BL/6J mice following an intra-peritoneal

infection with S. aureus (16107 CFU/g) or E. coli (66104 CFU/g).

Principal Components Analysis plots of the samples in the dataset.

Samples are colored by infection status and pathogen. (B) S. aureus

infection by time after inoculation (n = 10 animals/time point). (C)

E. coli infection by time after inoculation (n = 10 animals/time

point). (D) PCA differentiated by pathogen.
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Figure S2 Heat maps of genes contributing to the
murine S. aureus classifier. (A) Genes within the top five

factors contributing to the murine S. aureus classifier were identified

and ranked by p-value after Bonferroni correction. A subset of

genes (393 after removing duplicates) is depicted here, stratified by

pathogen. (B) The same genes depicted in part (A) are categorized

first pathogen and then by time since infection.

(DOC)

Figure S3 Venn diagram demonstrating the number of
overlapping probes in each murine experimental group

pairwise comparison. Probes were included that had signif-

icantly different levels of expression after Bonferroni correction.

(DOC)

Figure S4 Sixteen murine factors independently associ-
ated with S. aureus infection projected onto healthy
controls (left panel, black circles), animals with E. coli
infection (middle panel, blue triangles), and animals
with S. aureus infection (right panel, red ‘‘x’’). The y-axis

represents the factor score.

(DOC)

Figure S5 A factor-based classifier distinguishes MRSA
from MSSA infection in mice. An ROC curve is shown for
this classification.
(DOC)

FIgure S6 Venn diagram demonstrating the number of
overlapping probes in each human experimental group
pairwise comparison. Probes were included that had signif-

icantly different levels of expression after Bonferroni correction.

No probes met this cutoff for the S. aureus vs. E. coli comparison.

(DOC)

Figure S7 Seventeen human factors independently as-
sociated with S. aureus BSI projected onto healthy
controls (left panel, black circles), subjects with E. coli
BSI (middle panel, blue triangles), and subjects with S.
aureus BSI (right panel, red ‘‘x’’). The y-axis represents the

factor score.

(DOC)

Figure S8 Heat map of genes contributing to the human
S. aureus classifier. Genes within the top two factors

contributing to the human S. aureus classifier were identified and

ranked by p-value after Bonferroni correction. A subset of genes

(86 after removing duplicates) is depicted here, stratified by

pathogen.

(DOC)

Table S1 Probes, ranked by p-value, that were differ-
entially expressed (after Bonferroni correction) in mice
with S. aureus infection vs. Healthy controls; S. aureus
vs. E. coli infection; and E. coli vs. Healthy controls. Also

presented is the average probe expression in each comparator

group and the fold-change within the pairwise comparison.

(XLSX)

Table S2 Probes and corresponding genes that were
differentially expressed (after Bonferroni correction) in
mice with MRSA vs. MSSA infection.
(DOC)

Table S3 Probes, ranked by p-value, that were differ-
entially expressed (after Bonferroni correction) in
humans with S. aureus infection vs. Healthy controls;
S. aureus vs. E. coli infection; and E. coli vs. Healthy
controls. Also presented is the average probe expression in each

comparator group and the fold-change within the pairwise

comparison.

(XLSX)

Table S4 Pathway analysis for the genes from pairwise
comparisons in the mouse and human study. Top 50

ranked pathways from GeneGo MetaCore pathway analysis based

upon p-value. Shaded text corresponds to pathways that are

present in both the mouse and human response to the specified

pathogen.

(XLSX)
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Table S5 Genes in pathways common to murine and
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(XLSX)
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aration.
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