828 research outputs found

    Surface relief structures for multiple beam LO generation

    Get PDF
    Linear and binary holograms for use in heterodyne detection with 10.6 micron imaging arrays are described. The devices match the amplitude and phase of the local oscillator to the received signal and thus maximize the system signal to noise ratio and resolution and minimize heat generation on the focal plane. In both the linear and binary approaches, the holographic surface-relief pattern is coded to generate a set of local oscillator beams when the relief pattern is illuminated by a single planewave. Each beam of this set has the same amplitude shape distribution as, and is collinear with, each single element wavefront illuminating array

    Binary optics: Trends and limitations

    Get PDF
    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use

    Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil

    No full text
    International audienceWe studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N2O we measured 27 soil chemical, soil microbiological and soil physical variables. Soil N2O fluxes were higher in the wet season than in the dry season. Fluxes of N2O from forest soils always exceeded fluxes from pasture soils and showed no consistent trend with pasture age. At our forest sites, nitrate was the dominant form of inorganic N both during wet and dry season. At our pasture sites nitrate generally dominated the inorganic N pools during the wet season and ammonium dominated during the dry season. Net mineralization and nitrification rates displayed large variations. During the dry season net immobilization of N was observed in some pastures. Compared to forest sites, young pasture sites (?2 years) had low microbial biomass N and protease activities. Protease activity and microbial biomass N peaked in pastures of intermediate age (4 to 8 years) followed by consistently lower values in older pasture (10 to 60 years). The C/N ratio of litter was low at the forest sites (~25) and rapidly increased with pasture age reaching values of 60-70 at pastures of 15 years and older. Nitrous oxide emissions at our sites were controlled by C and N availability and soil aeration. Fluxes of N2O were negatively correlated to leaf litter C/N ratio, NH4+-N and the ratio of NO3--N to the sum of NO3--N + NH4+-N (indicators of N availability), and methane fluxes and bulk density (indicators of soil aeration status) during the wet season. During the dry season fluxes of N2O were positively correlated to microbial biomass N, ?-glucosidase activity, total inorganic N stocks and NH4+-N. In our study region, pastures of all age emitted less N2O than old-growth forests, because of a progressive decline in N availability with pasture age combined with strongly anaerobic conditions in some pastures during the wet season

    Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    Get PDF
    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins

    Associations between Ethnic Minority Status and Popularity in Adolescence:The role of Ethnic Classroom Composition and Aggression

    Get PDF
    Although there are theoretical reasons to expect an association between ethnic minority status and popularity, research on this topic is scarce. Therefore, this association was investigated including the moderating role of the ethnic classroom composition and the mediating role of aggression. Data from the longitudinal Dutch SNARE (Social Network Analysis of Risk behavior in Early adolescence) project were used among first-year students (comparable to 5th grade) (N = 1134, N-classrooms = 51, M = 12.5 years, 137 non-Western ethnic minority students). Popularity and aggression were assessed with peer nominations. Multi-level Structural Equation Models showed that ethnic minority status was indirectly associated with higher popularity, through higher aggression. Moreover, with increasing numbers of ethnic minority students in the classroom, popularity levels of both ethnic majority and ethnic minority students decreased. Only when differences in aggression between ethnic minority and majority students were included in the analyses, while the ethnic classroom composition was not included, lower popularity levels were found for ethnic minority than ethnic majority students. Scientific and practical implications of this study were addressed in the discussion

    An Algorithm for constructing Hjelmslev planes

    Get PDF
    Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries of 2-uniform projective Hjelmselv planes.Comment: 15 pages. Algebraic Design Theory and Hadamard matrices, 2014, Springer Proceedings in Mathematics & Statistics 13

    Measuring Patient-Reported Outcomes Adaptively: Multidimensionality Matters!

    Get PDF
    As there is currently a marked increase in the use of both unidimensional (UCAT) and multidimensional computerized adaptive testing (MCAT) in psychological and health measurement, the main aim of the present study is to assess the incremental value of using MCAT rather than separate UCATs for each dimension. Simulations are based on empirical data that could be considered typical for health measurement: a large number of dimensions (4), strong correlations among dimensions (.77-.87), and polytomously scored response data. Both variable- (SE <.316, SE <.387) and fixed-length conditions (total test length of 12, 20, or 32 items) are studied. The item parameters and variance–covariance matrix Φ are estimated with the multidimensional graded response model (GRM). Outcome variables include computerized adaptive test (CAT) length, root mean square error (RMSE), and bias. Both simulated and empirical latent trait distributions are used to sample vectors of true scores. MCATs were generally more efficient (in terms of test length) and more accurate (in terms of RMSE) than their UCAT counterparts. Absolute average bias was highest for variable-length UCATs with termination rule SE <.387. Test length of variable-length MCATs was on average 20% to 25% shorter than test length across separate UCATs. This study showed that there are clear advantages of using MCAT rather than UCAT in a setting typical for health measurement

    Automated Feedback Can Improve Hypothesis Quality

    Get PDF
    Stating a hypothesis is one of the central processes in inquiry learning, and often forms the starting point of the inquiry process. We designed, implemented, and evaluated an automated parsing and feedback system that informed students about the quality of hypotheses they had created in an online tool, the hypothesis scratchpad. In two pilot studies in different domains (“supply and demand” from economics and “electrical circuits” from physics) we determined the parser's accuracy by comparing its judgments with those of human experts. A satisfactory to high accuracy was reached. In the main study (in the “electrical circuits” domain), students were assigned to one of two conditions: no feedback (control) and automated feedback. We found that the subset of students in the experimental condition who asked for automated feedback on their hypotheses were much more likely to create a syntactically correct hypothesis than students in either condition who did not ask for feedback

    Competing Claims on Natural Resources: What Role for Science?

    Get PDF
    Competing claims on natural resources become increasingly acute, with the poor being most vulnerable to adverse outcomes of such competition. A major challenge for science and policy is to progress from facilitating univocal use to guiding stakeholders in dealing with potentially conflicting uses of natural resources. The development of novel, more equitable, management options that reduce rural poverty is key to achieving sustainable use of natural resources and the resolution of conflicts over them. Here, we describe an interdisciplinary and interactive approach for: (i) the understanding of competing claims and stakeholder objectives; (ii) the identification of alternative resource use options, and (iii) the scientific support to negotiation processes between stakeholders. Central to the outlined approach is a shifted perspective on the role of scientific knowledge in society. Understanding scientific knowledge as entering societal arenas and as fundamentally negotiated, the role of the scientist becomes a more modest one, a contributor to ongoing negotiation processes among stakeholders. Scientists can, therefore, not merely describe and explain resource-use dynamics and competing claims, but in doing so, they should actively contribute to negotiation processes between stakeholders operating at different scales (local, national, regional, and global). Together with stakeholders, they explore alternatives that can contribute to more sustainable and equitable use of natural resources and, where possible, design new technical options and institutional arrangements

    Development and validation of a low dose simulator for computed tomography

    Get PDF
    To develop and validate software for facilitating observer studies on the effect of radiation exposure on the diagnostic value of computed tomography (CT). A low dose simulator was developed which adds noise to the raw CT data. For validation two phantoms were used: a cylindrical test object and an anthropomorphic phantom. Images of both were acquired at different dose levels by changing the tube current of the acquisition (500 mA to 20 mA in five steps). Additionally, low dose simulations were performed from 500 mA downwards to 20 mA in the same steps. Noise was measured within the cylindrical test object and in the anthropomorphic phantom. Finally, noise power spectra (NPS) were measured in water. The low dose simulator yielded similar image quality compared with actual low dose acquisitions. Mean difference in noise over all comparisons between actual and simulated images was 5.7 +/- 4.6% for the cylindrical test object and 3.3 +/- 2.6% for the anthropomorphic phantom. NPS measurements showed that the general shape and intensity are similar. The developed low dose simulator creates images that accurately represent the image quality of acquisitions at lower dose levels and is suitable for application in clinical studies.Radiolog
    corecore