160 research outputs found

    Anatomical basis of sleep

    Get PDF
    El sueño es un estado biológico activo, periódico, en el que se distinguen las etapas NREM y REM, que se alternan sucesivamente durante la noche. Intervienen los relojes biológicos en la modulación del sistema, así como neurotransmisores específicos. Se trata de una red neuronal compleja, en la que intervienen diversas zonas del sistema nervioso central. Los procesos oníricos están controlados además de forma neural. Se resume la historia de las investigaciones sobre el tema, desde el siglo XIX hasta nuestra época. Hay que destacar los recientes descubrimientos de Lugaresi y su equipo, que, al describir el insomnio familiar grave, dieron importancia al núcleo dorsomedial del tálamo en la instauración de la fase de sueño profundo. Al grupo de Reinoso se debe el hallazgo de que el “director de orquesta” en la instauración del sueño REM es la zona ventral paramediana del núcleo reticular pontino ora

    On the dynamics of nitrite, nitrate and other biomarkers of nitric oxide production in inflammatory bowel disease

    Get PDF
    Nitrite and nitrate are frequently used surrogate markers of nitric oxide (NO) production. Using rat models of acute and chronic DSS-induced colitis we examined the applicability of these and other NO-related metabolites, in tissues and blood, for the characterization of inflammatory bowel disease. Global NO dynamics were assessed by simultaneous quantification of nitrite, nitrate, nitroso and nitrosyl species over time in multiple compartments. NO metabolite levels were compared to a composite disease activity index (DAI) and contrasted with measurements of platelet aggregability, ascorbate redox status and the effects of 5-aminosalicylic acid (5-ASA). Nitroso products in the colon and in other organs responded in a manner consistent with the DAI. In contrast, nitrite and nitrate, in both intra- and extravascular compartments, exhibited variations that were not always in step with the DAI. Extravascular nitrite, in particular, demonstrated significant temporal instabilities, ranging from systemic drops to marked increases. The latter was particularly evident after cessation of the inflammatory stimulus and accompanied by profound ascorbate oxidation. Treatment with 5-ASA effectively reversed these fluctuations and the associated oxidative and nitrosative stress. Platelet activation was enhanced in both the acute and chronic model. Our results offer a first glimpse into the systemic nature of DSS-induced inflammation and reveal a greater complexity of NO metabolism than previously envisioned, with a clear dissociation of nitrite from other markers of NO production. The remarkable effectiveness of 5-ASA to abrogate the observed pattern of nitrite instability suggests a hitherto unrecognized role of this molecule in either development or resolution of inflammation. Its possible link to tissue oxygen consumption and the hypoxia that tends to accompany the inflammatory process warrants further investigation

    Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice

    Get PDF
    AbstractDevelopmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319

    Effects of Genetic Variants in ADCY5, GIPR, GCKR and VPS13C on Early Impairment of Glucose and Insulin Metabolism in Children

    Get PDF
    OBJECTIVE: Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C) in early impairment of glucose and insulin metabolism in children. RESEARCH DESIGN AND METHODS: We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305) in 638 Caucasian children with detailed metabolic testing including an oGTT and assessed associations with measures of glucose and insulin metabolism (including fasting blood glucose, insulin levels and insulin sensitivity/secretion indices) by linear regression analyses adjusted for age, sex, BMI-SDS and pubertal stage. RESULTS: The major allele (C) of rs2877716 (ADCY5) was nominally associated with decreased fasting plasma insulin (P = 0.008), peak insulin (P = 0.009) and increased QUICKI (P = 0.016) and Matsuda insulin sensitivity index (P = 0.013). rs17271305 (VPS13C) was nominally associated with 2 h blood glucose (P = 0.009), but not with any of the insulin or insulin sensitivity parameters. We found no association of the GIPR and GCKR variants with parameters of glucose and insulin metabolism. None of the variants correlated with anthropometric traits such as height, WHR or BMI-SDS, which excluded potential underlying associations with obesity. CONCLUSIONS: Our data on obese children indicate effects of genetic variation within ADCY5 in early impairment of insulin metabolism and VPS13C in early impairment of blood glucose homeostasis

    Role of proton pump inhibitors dosage and duration in Helicobacter pylori eradication treatment: Results from the European Registry on H. pylori management

    Get PDF
    Background: Management of Helicobacter pylori (H. pylori) infection requires co-treatment with proton pump inhibitors (PPIs) and the use of antibiotics to achieve successful eradication. Aim: To evaluate the role of dosage of PPIs and the duration of therapy in the effectiveness of H. pylori eradication treatments based on the ‘European Registry on Helicobacter pylori management’ (Hp-EuReg). Methods: Hp-EuReg is a multicentre, prospective, non-interventionist, international registry on the routine clinical practice of H. pylori management by European gastroenterologists. All infected adult patients were systematically registered from 2013 to 2022. Results: Overall, 36,579 patients from five countries with more than 1000 patients were analysed. Optimal (≥90%) first-line-modified intention-to-treat effectiveness was achieved with the following treatments: (1) 14-day therapies with clarithromycin-amoxicillin-bismuth and metronidazole-tetracycline-bismuth, both independently of the PPI dose prescribed; (2) All 10-day (except 10-day standard triple therapy) and 14-day therapies with high-dose PPIs; and (3) 10-day quadruple therapies with clarithromycin-amoxicillin-bismuth, metronidazole-tetracycline-bismuth, and clarithromycin-amoxicillin-metronidazole (sequential), all with standard-dose PPIs. In first-line treatment, optimal effectiveness was obtained with high-dose PPIs in all 14-day treatments, in 10- and 14-day bismuth quadruple therapies and in 10-day sequential with standard-dose PPIs. Optimal second-line effectiveness was achieved with (1) metronidazole-tetracycline-bismuth quadruple therapy for 14- and 10 days with standard and high-dose PPIs, respectively; and (2) levofloxacin-amoxicillin triple therapy for 14 days with high-dose PPIs. None of the 7-day therapies in both treatment lines achieved optimal effectiveness. Conclusions: We recommend, in first-line treatment, the use of high-dose PPIs in 14-day triple therapy and in 10-or 14-day quadruple concomitant therapy in first-line treatment, while standard-dose PPIs would be sufficient in 10-day bismuth quadruple therapies. On the other hand, in second-line treatment, high-dose PPIs would be more beneficial in 14-day triple therapy with levofloxacin and amoxicillin or in 10-day bismuth quadruple therapy either as a three-in-one single capsule or in the traditional scheme

    Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion

    Get PDF
    Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world's richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35% of the Earth's land surface in terms of those regions' areas, with the most widely distributed species Sonchus oleraceus occuring in 48% of the regions that cover 42% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4%) than mainland regions (29.5%), and fewer annual herbs (18.7% compared to 22.3%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide

    Cost effectiveness of ulcerative colitis treatment in Germany: a comparison of two oral formulations of mesalazine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The treatment of ulcerative colitis (UC) can place a substantial financial burden on healthcare systems. The anti-inflammatory compound 5-aminosalicylic acid (5-ASA; mesalazine) is the recommended first-line treatment for patients with UC. In this analysis, the incremental cost effectiveness ratio (ICER) of two oral formulations of 5-ASA (Mezavant<sup>® </sup>and Asacol<sup>®</sup>) is examined in the treatment of patients with mild-to-moderate, active UC in Germany.</p> <p>Methods</p> <p>A Markov cohort model was developed to assess the cost effectiveness of Mezavant compared with Asacol over a 5-year period in the German Statutory Health Insurance (SHI). Drug pricing details for 2009 were applied throughout the model, and overall resource use was determined and also fitted to 2009 from published results of a large cross sectional study of German SHI patients. Cost per quality adjusted life year (QALY) was the primary endpoint for this study. Remission rates were obtained using data from a randomised, phase III trial of Mezavant with an active Asacol reference arm and a long-term, open label, safety and tolerability trial of Mezavant. Uncertainty in the study model was assessed using one-way and probabilistic sensitivity analyses applying a Monte Carlo simulation.</p> <p>Results</p> <p>Over a 5-year period, healthcare costs for patients receiving Mezavant were 624 Euro lower than for patients receiving Asacol. Additionally, patients receiving Mezavant gained 0.011 QALYs or 18 more days in remission compared with Asacol. One-way sensitivity analyses suggest that these results are driven by both differences in the acquisition cost between mesalazine formulations and differences in treatment efficacy. Furthermore, sensitivity analyses suggest a probability of 76% for cost savings and higher QALYs with Mezavant compared with Asacol. If adherence and its influence on the remission rates and the risk of developing colorectal cancer were included in the model, the results might have even been more favorable to Mezavant due to its once daily dosing regimen.</p> <p>Conclusions</p> <p>This model suggests that patients treated with Mezavant may achieve increased time in remission and higher QALYs, with lower direct costs to the SHI when compared with Asacol. Mezavant may therefore be a suitable first-line option for the induction and maintenance of remission in UC.</p

    Developmental learning impairments in a rodent model of nodular heterotopia

    Get PDF
    Developmental malformations of neocortex—including microgyria, ectopias, and periventricular nodular heterotopia (PNH)—have been associated with language learning impairments in humans. Studies also show that developmental language impairments are frequently associated with deficits in processing rapid acoustic stimuli, and rodent models have linked cortical developmental disruption (microgyria, ectopia) with rapid auditory processing deficits. We sought to extend this neurodevelopmental model to evaluate the effects of embryonic (E) day 15 exposure to the anti-mitotic teratogen methylazoxymethanol acetate (MAM) on auditory processing and maze learning in rats. Extensive cortical anomalies were confirmed in MAM-treated rats post mortem. These included evidence of laminar disruption, PNH, and hippocampal dysplasia. Juvenile auditory testing (P21–42) revealed comparable silent gap detection performance for MAM-treated and control subjects, indicating normal hearing and basic auditory temporal processing in MAM subjects. Juvenile testing on a more complex two-tone oddball task, however, revealed a significant impairment in MAM-treated as compared to control subjects. Post hoc analysis also revealed a significant effect of PNH severity for MAM subjects, with more severe disruption associated with greater processing impairments. In adulthood (P60–100), only MAM subjects with the most severe PNH condition showed deficits in oddball two-tone processing as compared to controls. However, when presented with a more complex and novel FM sweep detection task, all MAM subjects showed significant processing deficits as compared to controls. Moreover, post hoc analysis revealed a significant effect of PNH severity on FM sweep processing. Water Maze testing results also showed a significant impairment for spatial but not non-spatial learning in MAM rats as compared to controls. Results lend further support to the notions that: (1) generalized cortical developmental disruption (stemming from injury, genetic or teratogenic insults) leads to auditory processing deficits, which in turn have been suggested to play a causal role in language impairment; (2) severity of cortical disruption is related to the severity of processing impairments; (3) juvenile auditory processing deficits appear to ameliorate with maturation, but can still be elicited in adulthood using increasingly complex acoustic stimuli; and (4) malformations induced with MAM are also associated with generalized spatial learning deficits. These cumulative findings contribute to our understanding of the behavioral consequences of cortical developmental pathology, which may in turn elucidate mechanisms contributing to developmental language learning impairment in humans

    Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS

    Get PDF
    The cellular form of the prion protein (PrP(C)) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrP(C) distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrP(C) expression profiles in different mammals we carried out a detailed expression analysis of PrP(C) distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrP(C) in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrP(C) in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species
    corecore