41 research outputs found
Garvicins AG1 and AG2 : two novel class IId bacteriocins of lactococcus garvieae Lg-Granada
Funding: This research was funded by the Spanish Ministry of Science, Innovation, and Universities, grant number RTI2018-098530-B-I00. The APC was funded by the Spanish Ministry of Science, Innovation, and Universities, grant number RTI2018-098530-B-I00.Lactococcus garvieae causes infectious diseases in animals and is considered an emerging zoonotic pathogen involved in human clinical conditions. In silico analysis of plasmid pLG50 of L. garvieae Lg-Granada, an isolate from a patient with endocarditis, revealed the presence of two gene clusters (orf 46–47 and orf 48–49), each one encoding a novel putative bacteriocin, i.e., garvicin AG1 (GarAG1; orf 46) and garvicin AG2 (GarAG2; orf 48), and their corresponding immunity proteins (orf 47 and orf 49). The chemically synthesised bacteriocins GarAG1 and GarAG2 presented inhibitory activity against pathogenic L. garvieae strains, with AG2 also being active against Listeria monocytogenes, Listeria ivanovii and Enterococcus faecalis. Genetic organisation, amino acid sequences and antimicrobial activities of GarAG1 and GarAG2 indicate that they belong to linear non-pediocin-like one-peptide class IId bacteriocins. Gram-positive bacteria that were sensitive to GarAG2 were also able to ferment mannose, suggesting that this bacteriocin could use the mannose phosphotransferase transport system (Man-PTS) involved in mannose uptake as a receptor in sensitive strains. Intriguingly, GarAG1 and GarAG2 were highly active against their own host, L. garvieae Lg-Granada, which could be envisaged as a new strategy to combat pathogens via their own weapons.Publisher PDFPeer reviewe
Recommended from our members
Uruburuella suis gen. nov., sp nov., isolated from clinical specimens of pigs
Five strains of an unusual Gram-negative, catalase-positive, oxidase-positive, coccobacillus-shaped bacterium isolated from the lungs and heart of pigs with pneumonia and pericarditis were characterized by phenotypic and molecular genetic methods. On the basis of cellular morphology and biochemical criteria, the isolates were tentatively assigned to the family Neisseriaceae, although they did not appear to correspond to any recognized genus or species. Comparative 16S rRNA gene sequencing showed that the five unidentified strains were phylogenetically highly related to each other and represent a hitherto unknown subline within the family Neisseriaceae. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown isolates from pigs be classified as a novel genus and species within the family Neisseriaceae, for which the name Uruburuella suis gen. nov., sp. nov. is proposed. The type strain of U. suis is 1258/02(T) (=CCUG 47806(T) =CECT 5685(T))
Recommended from our members
Corynebacterium suicordis sp. nov., from pigs
Nineteen strains of Gram-positive, non-motile, non-spore-forming, catalase-positive, rod-shaped bacteria isolated from pigs were characterized by using biochemical, molecular chemical and molecular genetic methods. Two distinct groups of organisms were discerned, based on their colonial morphology, CAMP (Christie-Atkins-Munch-Petersen) reaction and numerical profile by using the API Coryne system. The first group (113 strains) gave a doubtful discrimination between Corynebacterium striatum and Corynebacterium amycolatum, whilst the second group (six strains) were identified tentatively as Corynebacterium urealyticum. Comparative 16S rRNA gene sequencing studies demonstrated that all of the isolates belonged phylogenetically to the genus Corynebacterium. The first group of organisms was highly similar to Corynebacterium testudinoris with respect to 16S rRNA gene sequences and physiological characteristics, whereas the remaining six isolates formed a hitherto unknown subline within the genus, associated with a small subcluster of species that included Corynebacterium auriscanis and its close relatives. The unknown Corynebacterium sp. was distinguished readily from these and other species of the genus by biochemical tests. Based on both phenotypic and phylogenetic evidence, it is proposed that the new isolates from pigs should be classified as a novel species, Corynebacterium suicordis sp. nov. The type strain is P81/02(T) (=CECT 5724(T) =CCUG 46963(T))
Garvicins AG1 and AG2:two novel class IId bacteriocins of <i>lactococcus garvieae</i> Lg-Granada
Lactococcus garvieae causes infectious diseases in animals and is considered an emerging zoonotic pathogen involved in human clinical conditions. In silico analysis of plasmid pLG50 of L. garvieae Lg-Granada, an isolate from a patient with endocarditis, revealed the presence of two gene clusters (orf 46–47 and orf 48–49), each one encoding a novel putative bacteriocin, i.e., garvicin AG1 (GarAG1; orf 46) and garvicin AG2 (GarAG2; orf 48), and their corresponding immunity proteins (orf 47 and orf 49). The chemically synthesised bacteriocins GarAG1 and GarAG2 presented inhibitory activity against pathogenic L. garvieae strains, with AG2 also being active against Listeria monocytogenes, Listeria ivanovii and Enterococcus faecalis. Genetic organisation, amino acid sequences and antimicrobial activities of GarAG1 and GarAG2 indicate that they belong to linear non-pediocin-like one-peptide class IId bacteriocins. Gram-positive bacteria that were sensitive to GarAG2 were also able to ferment mannose, suggesting that this bacteriocin could use the mannose phosphotransferase transport system (Man-PTS) involved in mannose uptake as a receptor in sensitive strains. Intriguingly, GarAG1 and GarAG2 were highly active against their own host, L. garvieae Lg-Granada, which could be envisaged as a new strategy to combat pathogens via their own weapons
Recommended from our members
Isolation of Corynebacterium falsenii and description of Corynebacterium aquilae sp. nov., from eagles
Biochemical, molecular chemical and molecular genetic studies were performed on seven unidentified Gram-positive, rod-shaped organisms recovered from eagles. The strains were provisionally identified as Corynebacterium jeikeium with the commercial API Coryne system, but they were able to grow under anaerobic conditions and were non-lipophilic. Comparative 16S rRNA gene sequencing studies demonstrated that the isolates belonged phylogenetically to the genus Corynebacterium. Three strains were identified genotypically as Corynebacterium falsenii; the remaining four strains corresponded to a hitherto unknown lineage within the genus Corynebacterium, associated with a small subcluster of species that included Corynebacterium diphtheriae and its close relatives. The unknown bacterial strains were readily distinguished from these and other species of the genus by biochemical tests. Based on both phenotypic and phylogenetic evidence, it is proposed that the unknown bacterial strains from eagles should be classified as Corynebacterium aquilae sp. nov. (type strain is S-613(T)=CECT 5993(T)=CCUG 46511(T))
Molecular typing of Streptococcus suis isolates from Iberian pigs: A comparison with isolates from common intensively-reared commercial pig breeds
The Iberian pig (IP) is a traditional Spanish breed variety of the domestic pig (. Sus scrofa domesticus) with high economic importance because of the value of the dry-cured products in national and international markets. The genetic characteristics of tonsillar and clinical Streptococcus suis isolates from the IP maintained under extensive or intensive management conditions were investigated. S.-suis isolates from IP pigs were compared with S.-suis isolates from intensively-farmed pigs of common breeds (CBP). S.-suis was isolated from 48.4% of the IP tonsils examined, indicating wide distribution among IP pigs.Serotypes 1 (9.4%), 2 (8.6%) and 9 (7%) were the most commonly found, although a high percentage of S.-suis isolates were not typeable by coagglutination testing. No significant differences in carrier rates or serotype diversity were observed between management systems, indicating that intensive farming does not influence S.-suis colonisation. Both pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis showed a serotype-based distribution of S.-suis IP isolates. Serotypes 1 and 2 S.-suis isolates were grouped in the same cluster, whereas isolates of serotypes 9 and 7 were assigned to another cluster. All clinical and most tonsillar serotype 2 IP isolates were assigned to sequence type 1 (ST1) and exhibited the virulence genotype mrp+/epf+/sly+, indicating a high distribution of this genetic lineage among IP as well as a population of serotype 2 common to IPs and CBPs. The only clinical isolate of serotype 9 from IP was assigned to ST123, a sequence type associated with clinical isolates in CBPs in Spain. © 2014 Elsevier Ltd