179 research outputs found

    Vehiculización de compuestos efectivos frente al Virus de la Hepatitis C (VHC)

    Get PDF
    En este proyecto, “Vehiculización de compuestos efectivos frente al Virus de la Hepatitis C (VHC)”, se ha pretendido por una parte estudiar el comportamiento de las nanopartículas de oro modificadas y no modificadas con galactosa en su superficie (AuNPGal y AuNPTris respectivamente). Los estudios realizados ofreciendo los dos tipos de AuNPs a tres tipos celulares diferentes, nos han permitido validar un método de detección de la cantidad de AuNPs que son incorporadas a las células tras realizar experimentos paralelos de citometría de flujo y microscopía. Así se ha determinado que la modificación con galactosa es necesaria para la correcta entrada de nanopartículas a la célula, ya que en caso contrario las nanopartículas quedan absorbidas en la superficie celular. Aunque parece que los datos indican que las AuNPGal entrarían a la célula utilizando los receptores de galactosa, no se ha podido concluir de forma clara el mecanismo de entrada y se están llevando a cabo estudios que lo determinen. Por otra parte se ha pretendido validar la estrategia de vehiculización de los compuestos antivirales previamente identificados en el grupo de investigación, (OAVx) utilizando ciclodextrinas. Aunque la formación de complejos OAVx-Ciclodextrinas no ha sido posible de cuantificar mediante absorbancia, utilizando calorimetría isotérmica de titulación de determinaron las constantes de unión y los parámetros termodinámicos de la formación d complejos. Mediante el uso de un algoritmo gratuito en la red, se ha obtenido una simulación que nos permite tanto visualizar los grupos funcionales a través de los cuales se produce la interacción como cuantificar la superficie del compuesto que interacciona. Una vez formados los complejos, se ha determinado la actividad antiviral de los mismos, utilizando líneas celulares que portan un sistema en el que se mimetiza el ciclo de replicación del virus de la hepatitis C. Ha sido posible rescatar compuestos que aunque habían sido seleccionados por su demostrada eficacia in vitro, no lo hacían a nivel celular. Este proyecto máster ha contribuido de forma importante al desarrollo del proyecto global en el que se enmarca. Los datos obtenidos con las AuNPs permiten seleccionar el tipo de nanopartícula al que se le unirá la CDx (tras su modificación química correspondiente) y posteriormente se formará el complejo con el compuesto OAV de interés

    Identificación de compuestos inhibidores dirigidos contra la flavodoxina de Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae, causante de neumonía, otitis media, meningitis y bacteremia provoca más de un millón de muertes anuales y en un 25% de los casos, secuelas a nivel neurológico. Actualmente, la terapia contra este patógeno se basa en la administración de antibióticos y vacunas polivalentes dirigidas contra los serotipos más comunes, conocidos como “serotipos pediátricos”. La elevada diversidad genotípica y fenotípica de Streptococcus pneumoniae impide su erradicación, por ello es necesaria la búsqueda de una nueva diana terapeútica para combatir las infecciones causadas por este patógeno. En este proyecto de investigación, se realiza un cribado de 1120 compuestos dirigidos contra una proteína implicada en el metabolismo de metionina de Streptococcus, flavodoxina. La expresión del gen de flavodoxina se ha reportado como esencial en la supervivencia e invasividad de la bacteria a través de estudios de expresión génica durante la fase infectiva de Streptococcus. Su función esencial en el metabolismo bacteriano, la inexistencia de un homólogo proteico en humanos y la ausencia de variabilidad genotípica conducen a la elección de flavodoxina como posible diana terapeútica. A través del estudio de interacción proteína-ligando efectuado mediante el análisis de sus curvas de desnaturalización térmica (thermal-shift assay) se consigue identificar un compuesto que aumenta la estabilidad proteica de flavodoxina (Tm), L-Tiroxina. Los estudios de ITC (isothermal titration calorimetry) realizados para confirmar la interacción entre L-Tiroxina – SpFld fueron favorables, obteniendo valores de KD razonablemente buenos

    Streptococcus pneumoniae TIGR4 flavodoxin: Structural and biophysical characterization of a novel drug target

    Get PDF
    Streptococcus pneumoniae (Sp) strain TIGR4 is a virulent, encapsulated serotype that causes bacteremia, otitis media, meningitis and pneumonia. Increased bacterial resistance and limited efficacy of the available vaccine to some serotypes complicate the treatment of diseases associated to this microorganism. Flavodoxins are bacterial proteins involved in several important metabolic pathways. The Sp flavodoxin (Spfld) gene was recently reported to be essential for the establishment of meningitis in a rat model, which makes SpFld a potential drug target. To facilitate future pharmacological studies, we have cloned and expressed SpFld in E. coli and we have performed an extensive structural and biochemical characterization of both the apo form and its active complex with the FMN cofactor. SpFld is a short-chain flavodoxin containing 146 residues. Unlike the well-characterized long-chain apoflavodoxins, the Sp apoprotein displays a simple two-state thermal unfolding equilibrium and binds FMN with moderate affinity. The X-ray structures of the apo and holo forms of SpFld differ at the FMN binding site, where substantial rearrangement of residues at the 91-100 loop occurs to permit cofactor binding. This work will set up the basis for future studies aiming at discovering new potential drugs to treat S. pneumoniae diseases through the inhibition of SpFld.We acknowledge financial support from BFU2010-16297 and BFU2010-19504 [Ministerio de Ciencia e Innovación Spain], BFU2013-47064-P, BIO2014-57314-REDT and CTQ2013-44367-C2-2-P [Ministerio de Economía y Competitividad, Spain], and DGA (Protein Targets B89). We also thank synchrotron radiation sources DLS (Oxford), and in particular beamline I04-1 (experiment number MX8035-3 and MX8035-11). The research leading to these results has also received funding from the FP7 (2007–2013) under BIOSTRUCTX-7687. A.R.C. was funded by a Banco Santander Central Hispano/Universidad de Zaragoza predoctoral fellowship. M. C-G was recipient of a predoctoral fellowship from the Government of Aragón.Peer Reviewe

    Small molecule inhibitors of the response regulator ArsR exhibit bactericidal activity against Helicobacter pylori

    Get PDF
    Helicobacter pylori is considered the most prevalent bacterial pathogen in humans. The increasing antibiotic resistance evolved by this microorganism has raised alarm bells worldwide due to the significant reduction in the eradication rates of traditional standard therapies. A major challenge in this antibiotic resistance crisis is the identification of novel microbial targets whose inhibitors can overcome the currently circulating resistome. In the present study, we have validated the use of the essential response regulator ArsR as a novel and promising therapeutic target against H. pylori infections. A high-throughput screening of a repurposing chemical library using a fluorescence-based thermal shift assay identified several ArsR binders. At least four of these low-molecular weight compounds noticeably inhibited the DNA binding activity of ArsR and showed bactericidal effects against antibiotic-resistant strains of H. pylori. Among the ArsR inhibitors, a human secondary bile acid, lithocholic acid, quickly destroyed H. pylori cells and exhibited partial synergistic action in combination with clarithromycin or levofloxacin, while the antimicrobial effect of this compound against representative members of the normal human microbiota such as Escherichia coli and Staphylococcus epidermidis appeared irrelevant. Our results enhance the battery of novel therapeutic tools against refractory infections caused by multidrug-resistant H. pylori strains

    Identifying potential novel drugs against Helicobacter pylori by targeting the essential response regulator HsrA

    Get PDF
    The increasing antibiotic resistance evolved by Helicobacter pylori has alarmingly reduced the eradication rates of first-line therapies. To overcome the current circulating resistome, we selected a novel potential therapeutic target in order to identify new candidate drugs for treating H. pylori infection. We screened 1120 FDA-approved drugs for molecules that bind to the essential response regulator HsrA and potentially inhibit its biological function. Seven natural flavonoids were identified as HsrA binders. All of these compounds noticeably inhibited the in vitro DNA binding activity of HsrA, but only four of them, apigenin, chrysin, kaempferol and hesperetin, exhibited high bactericidal activities against H. pylori. Chrysin showed the most potent bactericidal activity and the most synergistic effect in combination with clarithromycin or metronidazole. Flavonoid binding to HsrA occurs preferably at its C-terminal effector domain, interacting with amino acid residues specifically involved in forming the helix-turn-helix DNA binding motif. Our results validate the use of HsrA as a novel and effective therapeutic target in H. pylori infection and provide molecular evidence of a novel antibacterial mechanism of some natural flavonoids against H. pylori. The results further support the valuable potential of natural flavonoids as candidate drugs for novel antibacterial strategies

    2-oxoglutarate modulates the affinity of FurA for the ntcA promoter in Anabaena sp. PCC 7120

    Get PDF
    2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins

    Influence of the disordered domain structure of MeCP2 on its structural stability and dsDNA interaction

    Get PDF
    Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-associated structural protein. MeCP2 deregulation results in two neurodevelopmental disorders: MeCP2 dysfunction is associated with Rett syndrome, while excess of activity is associated with MeCP2 duplication syndrome. MeCP2 is an intrinsically disordered protein (IDP) constituted by six structural domains with variable, small percentage of well-defined secondary structure. Two domains, methyl-CpG binding domain (MBD) and transcription repressor domain (TRD), are the elements responsible for dsDNA binding ability and recruitment of the gene transcription/silencing machinery, respectively. Previously we studied the influence of the completely disordered, MBD-flanking domains (N-terminal domain, NTD, and intervening domain, ID) on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41,635). Here we report the biophysical study of the influence of the remaining domains (transcriptional repressor domain, TRD, and C-terminal domains, CTDα and CTDβ) on the structural stability of MBD and the dsDNA binding capabilities of MBD and ID. The influence of distant disordered domains on MBD properties makes it necessary to consider the NTD-MBD-ID variant as the minimal protein construct for studying dsDNA/chromatin binding properties, while the full-length protein should be considered for transcriptional regulation studies

    Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c

    Get PDF
    Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.Junta de Andalucía BIO198Ministerio de Economía y Competitividad BFU2015-71017 / BMC y BFU2013-4706

    Structural and functional evidence for membrane docking and disruption sites on phospholipase A2-like proteins revealed by complexation with the inhibitor suramin

    Get PDF
    Local myonecrosis resulting from snakebite envenomation is not efficiently neutralized by regular antivenom administration. This limitation is considered to be a significant health problem by the World Health Organization. Phospholipase A2-like (PLA2-like) proteins are among the most important proteins related to the muscle damage resulting from several snake venoms. However, despite their conserved tertiary structure compared with PLA2s, their biological mechanism remains incompletely understood. Different oligomeric conformations and binding sites have been identified or proposed, leading to contradictory data in the literature. In the last few years, a comprehensive hypothesis has been proposed based on fatty-acid binding, allosteric changes and the presence of two different interaction sites. In the present study, a combination of techniques were used to fully understand the structural-functional characteristics of the interaction between suramin and MjTX-II (a PLA2-like toxin). In vitro neuromuscular studies were performed to characterize the biological effects of the protein-ligand interaction and demonstrated that suramin neutralizes the myotoxic activity of MjTX-II. The high-resolution structure of the complex identified the toxin-ligand interaction sites. Calorimetric assays showed two different binding events between the protein and the inhibitor. It is demonstrated for the first time that the inhibitor binds to the surface of the toxin, obstructing the sites involved in membrane docking and disruption according to the proposed myotoxic mechanism. Furthermore, higher-order oligomeric formation by interaction with interfacial suramins was observed, which may also aid the inhibitory process. These results further substantiate the current myotoxic mechanism and shed light on the search for efficient inhibitors of the local myonecrosis phenomenon.Peer Reviewe

    Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors

    Get PDF
    18 pags., 6 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.This work used the platforms of the Grenoble Instruct center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from INSTRUCT (“Innovative EM/NMR approach for the characterization of the drug target ClpP APPID: 301“), FRISBI (ANR-10-INSB-05-02), and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). We thank the ESRF for beamtime at ID30A and ID23-1. Funding: This work was supported by Spanish Ministerio de Economia y Competitividad (BFU2016-78232-P) and Instituto de Salud Carlos III co-funded by European Union (PI15/00663 and PI18/00349, ERDF/ ESF, “Investing in your future”). This work was financially supported by the European Research Council (ERC-Stg-2012-311318 to P.S.). J.F. is supported by an EMBO long-term post-doctoral fellowship (ALTF441-2017)
    corecore