177 research outputs found

    Policing the community together: the impact of technology on citizen engagement

    Get PDF
    Despite broad and often varied underlying definitions, a common theme throughout community and neighbourhood policing strategies establishes the need to target improvements in the relationship and level of engagement between the police and the communities they serve. Community policing approaches have long underpinned a desire to move away from reactive policing models towards those which establish a more proactive philosophy, responsive to the wants and needs of the community. The near ubiquitous proliferation of smartphones and other ICTs (Information and Communication Technologies) means they are often seen as a vector through which initiatives of all kinds can instil a culture of proactive engagement with their respective stakeholder communities. This paper builds upon existing research which suggests that technologies for crime prevention should be designed to support communications and problem-solving rather than used simply as a means to disseminate information, unpacking a number of the core concepts that are considered central to participation and effective engagement; social capital, public participation and social and digital inclusion. Moreover, examples of wider initiatives are comparatively discussed, not just those associated with community policing, which target the engagement of communities through the use of technology, and more specifically mobile applications, before reflecting on the empirical evidence and experiences gleaned through the EU H2020 funded ‘UNITY’ project, a project that sought to establish effective strategies for engagement between police and citizen communities

    Risk-shifting Through Issuer Liability and Corporate Monitoring

    Get PDF
    This article explores how issuer liability re-allocates fraud risk and how risk allocation may reduce the incidence of fraud. In the US, the apparent absence of individual liability of officeholders and insufficient monitoring by insurers under-mine the potential deterrent effect of securities litigation. The underlying reasons why both mechanisms remain ineffective are collective action problems under the prevailing dispersed ownership structure, which eliminates the incentives to moni-tor set by issuer liability. This article suggests that issuer liability could potentially have a stronger deterrent effect when it shifts risk to individuals or entities holding a larger financial stake. Thus, it would enlist large shareholders in monitoring in much of Europe. The same risk-shifting effect also has implications for the debate about the relationship between securities litigation and creditor interests. Credi-tors’ claims should not be given precedence over claims of defrauded investors (e.g., because of the capital maintenance principle), since bearing some of the fraud risk will more strongly incentivise large creditors, such as banks, to monitor the firm in jurisdictions where corporate debt is relatively concentrated

    Examination of Late Palaeolithic archaeological sites in northern Europe for the preservation of cryptotephra layers

    Get PDF
    We report the first major study of cryptotephra (non-visible volcanic ash layers) on Late Palaeolithic archaeological sites in northern Europe. Examination of 34 sites dating from the Last Termination reveals seven with identifiable cryptotephra layers. Preservation is observed in minerogenic and organic deposits, although tephra is more common in organic sediments. Cryptotephra layers normally occur stratigraphically above or below the archaeology. Nearby off-site palaeoclimate archives (peat bogs and lakes <0.3 km distant) were better locations for detecting tephra. However in most cases the archaeology can only be correlated indirectly with such cryptotephras. Patterns affecting the presence/absence of cryptotephra include geographic position of sites relative to the emitting volcanic centre; the influence of past atmospherics on the quantity, direction and patterns of cryptotephra transport; the nature and timing of local site sedimentation; sampling considerations and subsequent taphonomic processes. Overall, while tephrostratigraphy has the potential to improve significantly the chronology of such sites many limiting factors currently impacts the successful application

    Gender-Specific Effects of Unemployment on Family Formation: A Cross-National Perspective

    Full text link

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor Jørgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore