85 research outputs found

    Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts

    Get PDF
    Angiogenesis is a multistep process that is limited and carefully regulated in normal adult tissue, but in tumours this regulation is disrupted and the process remains ‘switched on’ (Hanahan and Folkman, 1996). Ample experimental data support the fact that tumour growth requires access to blood vessels and subsequent expansion of host vessels to provide nutrients for the growing tumour mass (Folkman, 1995a). Furthermore, many studies in a variety of tumour types have reported a correlation between the extent of tumour vasculature and poor prognosis or increased metastases (Weidner et al, 1991; Folkman, 1995b; Weidner and Folkman, 1996). Thus, accurate assessment of the vasculature of tumours could provide valuable information regarding treatment outcomes and the likelihood of metastatic spread to other sites. Angiogenesis can be regulated by a variety of factors. Several cytokines produced by immune cells also have been shown to affect the process of angiogenesis. One of the most noteworthy is interleukin (IL)-12, which is produced by antigen presenting cells (APC), such as macrophages and dendritic cells (DC) in response to bacterial stimuli or other inflammatory cytokines. Thus, IL-12 plays an important role in both the innate and adaptive immune responses (Trinchieri, 1998). Owing to its central role in stimulating immunity, it has been examined for possible therapeutic effects in the treatment of tumours. In addition to its effects on the immune system, IL-12 has also been shown to inhibit angiogenesis (Voest et al, 1995; Sgadari et al, 1996). Despite studies in both experimental models and in patients (reviewed in Trinchieri and Scott, 1999), and clear demonstrations of therapeutic efficacy, relatively little is known about how it alters vessel formation within tumours. In part, this is due to the difficulty in assessing the three-dimensional structure of vessels and other cellular components within the tumour. Assessment of tumour vessels is generally based on immunohistochemistry of tumour sections. Although use of this technique has led to a great deal of important information, these procedures are extremely time consuming and provide only a limited two-dimensional view of the vessels. This makes it very difficult to visualise the structure of the microvasculature and identify differences among different tumour types or changes following treatment regimens. To more easily and accurately visualise vessels within tumours, we developed a whole-tissue mount technique that provides a three-dimensional view of the tumour vasculature relative to other components of the tumour tissue. This technique was first validated by studying vessels from transgenic mice that express green fluorescent protein (GFP) (Wu et al, 2000), and then used to investigate the mechanism by which IL-12 influences the vessel architecture within B16 tumours

    Dilated Thin-Walled Blood and Lymphatic Vessels in Human Endometrium: A Potential Role for VEGF-D in Progestin-Induced Break-Through Bleeding

    Get PDF
    Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB) are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent

    Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone

    Get PDF
    Vascular endothelial growth factor (VEGF) is a proangiogenic cytokine that is expressed highly in many solid tumours often correlating with a poor prognosis. In this study, we investigated the expression of VEGF and its receptors in bone metastases from primary human breast tumours and further characterised its effects on osteoclasts in vitro. Breast cancer metastases to bone were immunohistochemically stained for VEGF, its receptors VEGFR1 and 2 (vascular endothelial growth factor receptor 1 and 2), demonstrating that breast cancer metastases express VEGF strongly and that surrounding osteoclasts express both VEGFR1 and VEGFR2. RAW 264.7 cells (mouse monocyte cell line) and human peripheral blood mononuclear cells (PBMCs) were cultured with VEGF, RANKL and M-CSF. VEGF and RANKL together induced differentiation of multinucleated, tartrate-resistant acid phophatase (TRAP)-positive cells in similar numbers to M-CSF and RANKL. The PBMCs were also able to significantly stimulate resorption of mineralised matrix after treatment with M-CSF with RANKL and VEGF with RANKL. We have shown that VEGF in the presence of RANKL supports PBMC differentiation into osteoclast-like cells, able to resorb substrate. Vascular endothelial growth factor may therefore play a role in physiological bone resorption and in pathological situations. Consequently, VEGF signalling may be a therapeutic target for osteoclast inhibition in conditions such as tumour osteolysis

    Sialyl Lewis X Expression and Lymphatic Microvessel Density in Primary Tumors of Node-negative Colorectal Cancer Patients Predict Disease Recurrence

    Get PDF
    Up to 30% of curatively resected colorectal cancer patients with tumor-negative lymph nodes, show disease recurrence. We assessed whether these high-risk patients can be identified by examining primary tumors for the following blood and lymphatic vasculature markers: A) sialyl Lewis X (sLeX), vascular endothelial growth factor (VEGF)-C and VEGF-D expression; B) blood and lymphatic microvessel density (BMVD/LMVD); and C) the presence of blood and lymphatic vessel invasion. Thirty-six cases (disease recurrence within 5 years) and 72 controls (no disease recurrence for at least 5 years) were selected in a case-control design. Tumor sections were stained by antibodies CSLEX1 (sLeX), anti-VEGF-C, anti-VEGF-D, anti-CD31 (BMVD) or D2–40 (LMVD) to determine the parameters as mentioned above. A multivariate analysis showed sLeX expression and high LMVD (odds ratio 5.1, 95% confidence interval 1.3–20.0 and odds ratio 3.1, 95% confidence interval 1.0–10.0, respectively) to be independent factors predicting disease recurrence. Expression of sLeX correlated with liver metastases (P = 0.015). A high LMVD was related to regional intra-abdominal or intrapelvic metastases in lymph nodes and distant metastases other than in the liver and lungs such as peritoneum, bones, brain and adrenal glands (P = 0.004). A high BMVD in the invasive front correlated with lung metastases (P = 0.018). We show that high-risk node-negative colorectal cancer patients can be identified by primary tumor assessment for sLeX expression and LMVD. Our results are consistent with the notion that both lymphatic and hematogenous metastasis play a role in colorectal cancer

    Gender and Management: new directions in research and continuing patterns in practice

    Get PDF
    This is the author’s version of the following article. The definitive version is available at www.interscience.wiley.com:Adelina Broadbridge and Jeff Hearn, Gender and management: New directions in research and continuing patterns in practice, 2008, British Journal of Management, (19), s1, 38-49. http://dx.doi.org/10.1111/j.1467-8551.2008.00570.xCopyright: British Academy of Management, Blackwell Publishing Ltdhttp://www.blackwellpublishing.com

    Expression of angiogenic factors predicts response to chemoradiotherapy and prognosis of oesophageal squamous cell carcinoma

    Get PDF
    The ability to predict patients' responses to chemoradiotherapy by analyzing pre-treatment biopsy specimens would be valuable for managing oesophageal squamous-cell cancer. To this end, the expression of p53, thymidine phosphorylase and vascular endothelial cell growth factor was analyzed by immunohistochemistry in 52 patients with oesophageal squamous-cell cancer prior to chemoradiotherapy. Treatment consisted of radiotherapy (40 Gy) and 5 day-infusion of 5-Fluorouracil (500 mg m−2 per day) combined with cisplatin (10 mg m−2 per day). Following treatment, imaging and endoscopic reassessment was performed to establish treatment response. Thirty-one patients underwent radical surgery and 21 patients were treated with an additional 20 Gy of radiotherapy. Of the tumours studied, 58% were p53-positive, 40% thymidine phosphorylase-positive and 44% vascular endothelial cell growth factor-positive. A clinical response was observed in 36 patients (69%) and was negatively associated with thymidine phosphorylase expression (P=0.02) and vascular endothelial cell growth factor expression (P<0.001). However, the 5-year survival rate was significantly lower only in patients with vascular endothelial cell growth factor-positive tumours (P=0.037). Multivariate analysis identified vascular endothelial cell growth factor as a significant independent prognostic factor (P=0.0147). These results suggest that expression of angiogenic factors has predictive value for the treatment response and outcome of patients with oesophageal cancer

    Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to ets binding sites

    Get PDF
    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction

    Direct Sensing of Endothelial Oxidants by Vascular Endothelial Growth Factor Receptor-2 and c-Src

    Get PDF
    BACKGROUND: ADPH oxidase-derived reactive oxygen species (ROS) play important roles in redox homeostasis and signal transduction in endothelial cells (ECs). We previously demonstrated that c-Src plays a key role in VEGF-induced, ROS-dependent selective activation of PI3K-Akt but not PLCγ-1-ERK1/2 signaling pathways. The aim of the present study was to understand how VEGFR-2-c-Src signaling axis 'senses' NADPH oxidase-derived ROS levels and couples VEGF activation of c-Src to the redox state of ECs. METHODOLOGY/PRINCIPAL FINDINGS: Using biotinylated probe that detects oxidation of cysteine thiol (cys-OH) in intracellular proteins, we demonstrate that VEGF induced oxidative modification in c-Src and VEGFR-2, and that reduction in ROS levels using siRNA against p47(phox) subunit of Rac1-dependent NADPH oxidase inhibited this phenomenon. Co-immunoprecipitation studies using human coronary artery ECs (HCAEC) showed that VEGF-induced ROS-dependent interaction between VEGFR-2 and c-Src correlated with their thiol oxidation status. Immunofluorescence studies using antibodies against internalized VEGFR-2 and c-Src demonstrated that VEGF-induced subcellular co-localization of these tyrosine kinases were also dependent on NADPH oxidsase-derived ROS. CONCLUSION/SIGNIFICANCE: These results demonstrate that VEGF induces cysteine oxidation in VEGFR-2 and c-Src in an NADPH oxidase-derived ROS-dependent manner, suggesting that VEGFR-2 and c-Src can 'sense' redox levels in ECs. The data also suggest that thiol oxidation status of VEGFR-2 and c-Src correlates with their ability to physically interact with each other and c-Src activation. Taken together, these findings suggest that prior to activating downstream c-Src-PI3K-Akt signaling pathway, VEGFR-2-c-Src axis requires an NADPH oxidase-derived ROS threshold in ECs
    corecore