18 research outputs found

    Operations of and Future Plans for the Pierre Auger Observatory

    No full text
    Contributions to the 31st ICRC, Lodz, Poland, July 2009International audienceTechnical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009

    Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    No full text
    Studies of the correlations of ultra-high energy cosmic ray directions with extra-Galactic objects, of general anisotropy, of photons and neutrinos, and of other astrophysical effects, with the Pierre Auger Observatory. Contributions to the 31st ICRC, Lodz, Poland, July 2009

    Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    No full text
    Submissions to the 31st International Cosmic Ray Conference, Lodz, Poland (July 2009)International audienceStudies of the composition of the highest energy cosmic rays with the Pierre Auger Observatory, including examination of hadronic physics effects on the structure of extensive air showers. Submissions to the 31st ICRC, Lodz, Poland (July 2009)

    The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    No full text
    Studies of the cosmic ray energy spectrum at the highest energies with the Pierre Auger Observatory

    Operations of and Future Plans for the Pierre Auger Observatory

    No full text
    Contributions to the 31st ICRC, Lodz, Poland, July 2009International audienceTechnical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009

    Calibration and Monitoring of the Pierre Auger Observatory

    No full text
    Reports on the atmospheric monitoring, calibration, and other operating systems of the Pierre Auger Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009

    Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    No full text
    Studies of the composition of the highest energy cosmic rays with the Pierre Auger Observatory, including examination of hadronic physics effects on the structure of extensive air showers. Submissions to the 31st ICRC, Lodz, Poland (July 2009)

    The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory

    No full text
    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction

    Injection techniques

    Get PDF
    International audienceIn this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an extensive air shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte-Carlo results showing how LTP functions from data are in good agreement with simulations

    The Pierre Auger Observatory III: Other Astrophysical Observations

    No full text
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger Observator
    corecore