1,123 research outputs found

    Making an impact: The influence of policies to reduce emissions from aviation on the business travel patterns of individual corporations

    Get PDF
    The contribution of aviation to global carbon dioxide (CO2) emissions is projected to triple by 2050. As nations strive to meet CO2 reduction targets, policy interventions to manage the growth of emissions arising from air travel are likely. Here, we investigate the potential influence of aviation emissions reduction policies on the business travel patterns of individual corporations. Using travel data from six UK-based companies, we find that increased ticket prices can deliver substantial emissions cuts, particularly on premium class flights, and may provide strong financial incentives to seek modal and/or technological alternatives to flying. We also find that corporations from different business sectors vary in their responsiveness to arange of policy options. Finally, we examine questionnaire data to determine whether companies more broadly are going beyond compliance to mitigate their environmental impact by managing travel-related emissions voluntarily. Although many corporations are measuring and reporting emissions, only a limited number are willing to implement in-house reduction policies prior to regulation

    On associating Fast Radio Bursts with afterglows

    Get PDF
    A radio source that faded over six days, with a redshift of z0.5z\approx0.5 host, has been identified by Keane et al. (2016) as the transient afterglow to a fast radio burst (FRB 150418). We report follow-up radio and optical observations of the afterglow candidate and find a source that is consistent with an active galactic nucleus. If the afterglow candidate is nonetheless a prototypical FRB afterglow, existing slow-transient surveys limit the fraction of FRBs that produce afterglows to 0.25 for afterglows with fractional variation, m=2S1S2/(S1+S2)0.7m=2|S_1-S_2|/(S_1+S_2)\geq0.7, and 0.07 for m1m\geq1, at 95% confidence. In anticipation of a barrage of bursts expected from future FRB surveys, we provide a simple framework for statistical association of FRBs with afterglows. Our framework properly accounts for statistical uncertainties, and ensures consistency with limits set by slow-transient surveys.Comment: Accepted version (ApJL

    Combining continuous near–road monitoring and inverse modeling to isolate the effect of highway expansion on a school in Las Vegas

    Get PDF
    AbstractThe impact of a highway expansion on a school adjacent to the highway is investigated with a novel method called the Sustained Wind Incidence Method (SWIM). SWIM falls under the broad group of environmental forensics methods where measured concentration data are used to identify possible contributors such as a point, line or a sectional source. SWIM helps to identify potential sources by highlighting spatial domains associated with the markers unique to potential contributors. In this study, SWIM is used to identify sources of traffic related emissions. The marker used to measure the impact of the traffic due to expansion is black carbon (BC), a key traffic related emission mostly associated with large vehicles (>12m in length), collected both before and after the expanded lanes were open for use. Using this method, multiple source domains may be simultaneously identified. For this study, the data collection site was situated at the school about 20 meters from the sound wall (7 meters high) separating the school and the highway. SWIM results show that the road expansions may have impacted the traffic patterns of the nearby non–highway feeder road and on–ramp (adjacent to the sound wall) traffic to the highway. This sector showed a surprisingly larger change than the highway in the observed increase in their relative contribution to the receptor site. Some domains (apportioned sector) show a dramatic increase ranging roughly from 10% to 50% in relative contributions. Using the output from SWIM and knowledge of local contributors, a local source landscape is painted

    Prospects for detecting the 21cm forest from the diffuse intergalactic medium with LOFAR

    Get PDF
    We discuss the feasibility of the detection of the 21cm forest in the diffuse IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV vs. x-ray heating) we do not expect to distinguish them by means of observations of the 21cm forest. Because the presence of a strong x-ray background would make the detection of 21cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the x-ray background and the thermal history of the universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z>12, when the IGM is still mostly neutral and cold, in contrast with the more well-defined, albeit broad, absorption features visible at lower redshift. Sharp, strong absorption features associated with rare, high density pockets of gas could be detected also at z~7 along preferential lines of sight.Comment: 12 pages, 13 figures. MNRAS, in pres

    The Scintillating Tail of Comet C/2020 F3 (Neowise)

    Full text link
    Context. The occultation of a radio source by the plasma tail of a comet can be used to probe structure and dynamics in the tail. Such occultations are rare, and the occurrence of scintillation, due to small-scale density variations in the tail, remains somewhat controversial. Aims. A detailed observation taken with the Low-Frequency Array (LOFAR) of a serendipitous occultation of the compact radio source 3C196 by the plasma tail of comet C/2020 F3 (Neowise) is presented. 3C196 tracked almost perpendicularly behind the tail, providing a unique profile cut only a short distance downstream from the cometary nucleus itself. Methods. Interplanetary scintillation (IPS) is observed as the rapid variation of the intensity received of a compact radio source due to density variations in the solar wind. IPS in the signal received from 3C196 was observed for five hours, covering the full transit behind the plasma tail of comet C/2020 F3 (Neowise) on 16 July 2020, and allowing an assessment of the solar wind in which the comet and its tail are embedded. Results. The results reveal a sudden and strong enhancement in scintillation which is unequivocally attributable to the plasma tail. The strongest scintillation is associated with the tail boundaries, weaker scintillation is seen within the tail, and previously-unreported periodic variations in scintillation are noted, possibly associated with individual filaments of plasma. Furthermore, contributions from the solar wind and comet tail are separated to measure a sharp decrease in the velocity of material within the tail, suggesting a steep velocity shear resulting in strong turbulence along the tail boundaryComment: Accepted for publication in Astronomy and Astrophysics, 8 pages, 9 figure

    Signal-to-noise measurements utilizing a novel dual-energy multimedia detector

    Get PDF
    Dual-energy measurements are presented utilizing a novel slot-scan digital radiographic imaging detector, operating on gaseous solid state ionization principles. The novel multimedia detector has two basic functional components: a noble gas-filled detector volume operating on gas microstrip principles, and a solid state detector volume. The purpose of this study is to investigate the potential use of this multimedia detector for enhanced dual-energy imaging. The experimental results indicate that the multimedia detector exhibits a large subtracted signal-to-noise ratio. Although the intrinsic merit of this device is being explored for medical imaging, potential applications of the multimedia detector technology in other industrial areas, such as aerospace imaging, aviation security, and surveillance, are also very promising

    DSA-10: A prototype array for localizing fast radio bursts

    Get PDF
    The Deep Synoptic Array 10 dish prototype is an instrument designed to detect and localise fast radio bursts with arcsecond accuracy in real time. Deployed at Owens Valley Radio Observatory, it consists of ten 4.5m diameter dishes, equipped with a 250MHz bandwidth dual polarisation receiver, centered at 1.4GHz. The 20 input signals are digitised and field programmable gate arrays are used to transform the data to the frequency domain and transmit it over ethernet. A series of computer servers buffer both raw data samples and perform a real time search for fast radio bursts on the incoherent sum of all inputs. If a pulse is detected, the raw data surrounding the pulse is written to disk for coherent processing and imaging. The prototype system was operational from June 2017 - February 2018 conducting a drift scan search. Giant pulses from the Crab pulsar were used to test the detection and imaging pipelines. The 10-dish prototype system was brought online again in March 2019, and will gradually be replaced with the new DSA-110, a 110-dish system, over the next two years to improve sensitivity and localisation accuracy.Comment: 10 pages, 13 figures, accepted by MNRA
    corecore