62 research outputs found

    A consensus research agenda for optimising nasal drug delivery

    Get PDF
    Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g. vaccines, biologics and drugs with action in the brain or sinuses, to local and systemic therapeutic targets. Innovations and new tools/knowledge are required to design products to deliver these therapeutic agents to the right target at the right time in the right patients. We report the outcomes of an expert meeting convened to consider gaps in knowledge and unmet research needs in terms of (i) formulation and devices, (ii) meaningful product characterization and modeling, (iii) opportunities to modify absorption and clearance. Important research questions were identified in the areas of device and formulation innovation, critical quality attributes for different nasal products, development of nasal casts for drug deposition studies, improved experimental models, the use of simulations and nasal delivery in special populations. We offer these questions as a stimulus to research and suggest that they might be addressed most effectively by collaborative research endeavors

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Primer to Voltage Imaging With ANNINE Dyes and Two-Photon Microscopy

    Get PDF
    ANNINE-6 and ANNINE-6plus are voltage-sensitive dyes that when combined with two-photon microscopy are ideal for recording of neuronal voltages in vivo, in both bulk loaded tissue and the dendrites of single neurons. Here, we describe in detail but for a broad audience the voltage sensing mechanism of fast voltage-sensitive dyes, with a focus on ANNINE dyes, and how voltage imaging can be optimized with one-photon and two-photon excitation. Under optimized imaging conditions the key strengths of ANNINE dyes are their high sensitivity (0.5%/mV), neglectable bleaching and phototoxicity, a linear response to membrane potential, and a temporal resolution which is faster than the optical imaging devices currently used in neurobiology (order of nanoseconds). ANNINE dyes in combination with two-photon microscopy allow depth-resolved voltage imaging in bulk loaded tissue to study average membrane voltage oscillations and sensory responses. Alternatively, if ANNINE-6plus is applied internally, supra and sub threshold voltage changes can be recorded from dendrites of single neurons in awake animals. Interestingly, in our experience ANNINE-6plus labeling is impressively stable in vivo, such that voltage imaging from single Purkinje neuron dendrites can be performed for 2 weeks after a single electroporation of the neuron. Finally, to maximize their potential for neuroscience studies, voltage imaging with ANNINE dyes and two-photon microscopy can be combined with electrophysiological recording, calcium imaging, and/or pharmacology, even in awake animals

    Mitochondrial Morphogenesis, Dendrite Development, and Synapse Formation in Cerebellum Require both Bcl-w and the Glutamate Receptor δ2

    Get PDF
    Bcl-w belongs to the prosurvival group of the Bcl-2 family, while the glutamate receptor δ2 (Grid2) is an excitatory receptor that is specifically expressed in Purkinje cells, and required for Purkinje cell synapse formation. A recently published result as well as our own findings have shown that Bcl-w can physically interact with an autophagy protein, Beclin1, which in turn has been shown previously to form a protein complex with the intracellular domain of Grid2 and an adaptor protein, nPIST. This suggests that Bcl-w and Grid2 might interact genetically to regulate mitochondria, autophagy, and neuronal function. In this study, we investigated this genetic interaction of Bcl-w and Grid2 through analysis of single and double mutant mice of these two proteins using a combination of histological and behavior tests. It was found that Bcl-w does not control the cell number in mouse brain, but promotes what is likely to be the mitochondrial fission in Purkinje cell dendrites, and is required for synapse formation and motor learning in cerebellum, and that Grid2 has similar phenotypes. Mice carrying the double mutations of these two genes had synergistic effects including extremely long mitochondria in Purkinje cell dendrites, and strongly aberrant Purkinje cell dendrites, spines, and synapses, and severely ataxic behavior. Bcl-w and Grid2 mutations were not found to influence the basal autophagy that is required for Purkinje cell survival, thus resulting in these phenotypes. Our results demonstrate that Bcl-w and Grid2 are two critical proteins acting in distinct pathways to regulate mitochondrial morphogenesis and control Purkinje cell dendrite development and synapse formation. We propose that the mitochondrial fission occurring during neuronal growth might be critically important for dendrite development and synapse formation, and that it can be regulated coordinately by multiple pathways including Bcl-2 and glutamate receptor family members

    In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors

    Get PDF
    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 \ub5M all-trans Retinoic Acid (ATRA), 5 \ub5M Phenyl Butyrate (PB), and 200 \ub5M diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and \u3b1-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors

    Neurotoxische Enzephalopathie unter Neuroleptika und Lithium

    Full text link
    Überlappende neuroleptische Medikationen sind in psychiatrischen Behandlungen gelegentlich unumgänglich. Wir berichten über eine unter schizoaffektiver Störung leidende 60-jährige Frau, welche vorübergehend 3 Neuroleptika und Lithium erhielt. Hierunter entwickelte sie eine neurotoxische Enzephalopathie mit Symptomen eines malignen neuroleptischen Syndroms. Gegenwärtig ist unklar, ob irreversible Hirnschäden zurückbleiben werden. Wir empfehlen engmaschige EEG-Kontrollen zur Früherkennung von Neurotoxizitä

    Heat stress vulnerability and critical environmental limits for older adults

    No full text
    Abstract The present study examined heat stress vulnerability of apparently healthy older vs. young adults and characterized critical environmental limits for older adults in an indoor setting at rest (Rest) and during minimal activity associated with activities of daily living. Critical environmental limits are combinations of ambient temperature and humidity above which heat balance cannot be maintained (i.e., becomes uncompensable) for a given metabolic heat production. Here we exposed fifty-one young (23 ± 4 yrs) and 49 older (71 ± 6 yrs) adults to progressive heat stress across a wide range of environments in an environmental chamber during Minimal Activity (young and older subjects) and Rest (older adults only). Heat compensability curves were shifted leftward for older adults indicating age-dependent heat vulnerablity (p < 0.01). During Minimal Activity, critical environmental limits were lower in older compared to young adults (p < 0.0001) and lower than those at Rest (p < 0.0001). These data document heat vulnerability of apparently healthy older adults and define critical environmental limits for indoor settings in older adults at rest and during activities of daily living, and can be used to develop evidence-based recommendations to minimize the deleterious impacts of extreme heat events in this population

    Abstract 11858: Epigenetic Reversion of Metabolic Memory Alterations in Human Cardiac Stromal Cells Isolated from Type-2 Diabetic Patients

    No full text
    INTRODUCTION: Stem cells derived from diabetes patients often loose most of their regenerative potential. Aims of this study were: 1) investigate the epigenetic basis of diabetes-dependent alterations in cardiac stromal cells (CStC) obtained from diabetes patients (D-CStC); 2) identify potential pharmacological interventions to restore their function. METHODS AND RESULTS: CStC were isolated from volunteer normoglycaemic (N=12) and type-2 diabetic patients (D-CStC, N=8) and long-term cultured in DMEM, 20% fetal bovine serum at normal glucose concentration (5 mM). In this condition, D-CStC revealed impaired proliferation (3 fold reduction), compared to controls, marked by reduced histone H3 serine 10 phosphorylation (H3S10P), decreased ability to form capillary like-structure and the presence of senescence-associated acidic beta-galactosidase. A global histone code profiling indicated a marked reduction in histone H3 Lysine 9 and 14 acetylation (H3K9Ac; H3K14Ac) and a relative increase in H3 Lysine 9 and 27 trimethylation (H3K9me3; H3K27me3), modifications commonly associated to chromatin condensation and gene repression. This finding was further supported by a down-regulation of the P300/CBP-associated factor (PCAF) paralleled by a decrease in total histone acetyl-transferase (HAT) activity. In this condition, a high level of DNA CpG highlands hypermethylation was detected at gene loci involved in cell proliferation including CDK2, CDK4, CDKN1B, CCNB1 and MCM2. Remarkably, treatment with the pro-acetylation compound SPV106, a PCAF-selective activator, restored H3K9Ac and H3K14Ac at normal level, reduced H3K9me3 global content, abolished DNA CpG hypermethylation and rescued D-CStC proliferation and capillary-like structure formation. CONCLUSIONS: Taken altogether our results suggest that the diabetes-associated metabolic syndrome permanently hits D-CStC determining chromatin structure and functional alterations which could be reversed by epigenetically active drugs
    • …
    corecore