17,801 research outputs found
Randomness in Competitions
We study the effects of randomness on competitions based on an elementary
random process in which there is a finite probability that a weaker team upsets
a stronger team. We apply this model to sports leagues and sports tournaments,
and compare the theoretical results with empirical data. Our model shows that
single-elimination tournaments are efficient but unfair: the number of games is
proportional to the number of teams N, but the probability that the weakest
team wins decays only algebraically with N. In contrast, leagues, where every
team plays every other team, are fair but inefficient: the top of
teams remain in contention for the championship, while the probability that the
weakest team becomes champion is exponentially small. We also propose a gradual
elimination schedule that consists of a preliminary round and a championship
round. Initially, teams play a small number of preliminary games, and
subsequently, a few teams qualify for the championship round. This algorithm is
fair and efficient: the best team wins with a high probability and the number
of games scales as , whereas traditional leagues require N^3 games to
fairly determine a champion.Comment: 10 pages, 8 figures, reviews arXiv:physics/0512144,
arXiv:physics/0608007, arXiv:cond-mat/0607694, arXiv:physics/061221
Radiation hardness of small-pitch 3D pixel sensors up to HL-LHC fluences
A new generation of 3D silicon pixel detectors with a small pixel size of
5050 and 25100 m is being developed for the HL-LHC
tracker upgrades. The radiation hardness of such detectors was studied in beam
tests after irradiation to HL-LHC fluences up to
n/cm. At this fluence, an operation voltage of only 100 V
is needed to achieve 97% hit efficiency, with a power dissipation of 13
mW/cm at -25C, considerably lower than for previous 3D sensor
generations and planar sensors.Comment: 5 pages, 2 figures, Proceedings of TIPP 2017, Beijing (International
Conference on The Technology and Instrumentation in Particle Physics 2017
Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit
In the present work we study numerically quasi-equatorial lensing by the
charged, stationary, axially-symmetric Kerr-Sen dilaton-axion black hole in the
strong deflection limit. In this approximation we compute the magnification and
the positions of the relativistic images. The most outstanding effect is that
the Kerr-Sen black hole caustics drift away from the optical axis and shift in
clockwise direction with respect to the Kerr caustics. The intersections of the
critical curves on the equatorial plane as a function of the black hole angular
momentum are found, and it is shown that they decrease with the increase of the
parameter . All of the lensing quantities are compared to particular
cases as Schwarzschild, Kerr and Gibbons-Maeda black holes.Comment: 31 pages, 17 figures; V2 references added, some typos corrected, V3
references added, language corrections, V4 table added, minor technical
correction
Dynamic scaling and universality in evolution of fluctuating random networks
We found that models of evolving random networks exhibit dynamic scaling
similar to scaling of growing surfaces. It is demonstrated by numerical
simulations of two variants of the model in which nodes are added as well as
removed [Phys. Rev. Lett. 83, 5587 (1999)]. The averaged size and connectivity
of the network increase as power-laws in early times but later saturate.
Saturated values and times of saturation change with paramaters controlling the
local evolution of the network topology. Both saturated values and times of
saturation obey also power-law dependences on controlling parameters. Scaling
exponents are calculated and universal features are discussed.Comment: 7 pages, 6 figures, Europhysics Letters for
State-Of-The-Art Review
Focal adhesions (FA) are large macromolecular assemblies relevant for various cellular and pathological events such as migration, polarization, and metastatic cancer formation. At FA sites at the migrating periphery of a cell, hundreds of players gather and form a network to respond to extra cellular stimuli transmitted by the integrin receptor, the most upstream component within a cell, initiating the FA signaling pathway. Numerous cellular experiments have been performed to understand the FA architecture and functions; however, their intricate network formation hampers unraveling the precise molecular actions of individual players. Here, in vitro bottom-up reconstitution presents an advantageous approach for elucidating the FA machinery and the hierarchical crosstalk of involved cellular players
On Universality in Human Correspondence Activity
Identifying and modeling patterns of human activity has important
ramifications in applications ranging from predicting disease spread to
optimizing resource allocation. Because of its relevance and availability,
written correspondence provides a powerful proxy for studying human activity.
One school of thought is that human correspondence is driven by responses to
received correspondence, a view that requires distinct response mechanism to
explain e-mail and letter correspondence observations. Here, we demonstrate
that, like e-mail correspondence, the letter correspondence patterns of 16
writers, performers, politicians, and scientists are well-described by the
circadian cycle, task repetition and changing communication needs. We confirm
the universality of these mechanisms by properly rescaling letter and e-mail
correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl
Gravitational Lensing by Rotating Naked Singularities
We model massive compact objects in galactic nuclei as stationary,
axially-symmetric naked singularities in the Einstein-massless scalar field
theory and study the resulting gravitational lensing. In the weak deflection
limit we study analytically the position of the two weak field images, the
corresponding signed and absolute magnifications as well as the centroid up to
post-Newtonian order. We show that there are a static post-Newtonian
corrections to the signed magnification and their sum as well as to the
critical curves, which are function of the scalar charge. The shift of the
critical curves as a function of the lens angular momentum is found, and it is
shown that they decrease slightingly for the weakly naked and vastly for the
strongly naked singularities with the increase of the scalar charge. The
point-like caustics drift away from the optical axis and do not depend on the
scalar charge. In the strong deflection limit approximation we compute
numerically the position of the relativistic images and their separability for
weakly naked singularities. All of the lensing quantities are compared to
particular cases as Schwarzschild and Kerr black holes as well as
Janis--Newman--Winicour naked singularities.Comment: 35 pages, 30 figure
Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis
Coloured network motifs are small subgraphs that enable to discover and interpret the patterns of interaction within the complex networks. The analysis of three-nodes motifs where the colour of the node reflects its high – white node or low – black node centrality in the social network is presented in the paper. The importance of the vertices is assessed by utilizing two measures: degree prestige and degree centrality. The distribution of motifs in these two cases is compared to mine the interconnection patterns between nodes. The analysis is performed on the social network derived from email communication
Modeling two-language competition dynamics
During the last decade, much attention has been paid to language competition
in the complex systems community, that is, how the fractions of speakers of
several competing languages evolve in time. In this paper we review recent
advances in this direction and focus on three aspects. First we consider the
shift from two-state models to three state models that include the possibility
of bilingual individuals. The understanding of the role played by bilingualism
is essential in sociolinguistics. In particular, the question addressed is
whether bilingualism facilitates the coexistence of languages. Second, we will
analyze the effect of social interaction networks and physical barriers.
Finally, we will show how to analyze the issue of bilingualism from a game
theoretical perspective.Comment: 15 pages, 5 figures; published in the Special Issue of Advances in
Complex Systems "Language Dynamics
- …