36 research outputs found

    A Hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications

    Get PDF
    A hadrosaurid vertebra was recovered during a palynological survey of the Upper Cretaceous Kanguk Formation in the eastern Canadian Arctic. This vertebra represents the farthest north record of any non-avian dinosaur to date. Although highly abraded, the fossil nonetheless represents an interesting biogeographic data point. During the Campanian, when this vertebra was deposited, the eastern Canadian Arctic was likely isolated both from western North America by the Western Interior Seaway and from more southern regions of eastern North America by the Hudson Seaway. This fossil suggests that large-bodied hadrosaurid dinosaurs may have inhabited a large polar insular landmass during the Late Cretaceous, where they would have lived year-round, unable to migrate to more southern regions during winters. It is possible that the resident herbivorous dinosaurs could have fed on non-deciduous conifers, as well as other woody twigs and stems, during the long, dark winter months when most deciduous plant species had lost their leaves.La vertèbre d’un hadrosauridé a été retrouvée pendant l’étude palynologique de la formation Kanguk remontant au Crétacé supérieur, dans l’est de l’Arctique canadien. Il s’agit de la vertèbre appartenant à un dinosaure non avien qui a été recueillie la plus au nord jusqu’à maintenant. Même si ce fossile est fortement abrasé, il n’en reste pas moins qu’il représente un point de donnée biogéographique intéressant. Pendant le Campanien, lorsque cette vertèbre a été déposée, l’est de l’Arctique canadien était vraisemblablement isolé de l’ouest de l’Amérique du Nord par la mer intérieure occidentale, et des régions plus au sud de l’est de l’Amérique du Nord par le bras de mer Hudson. Ce fossile suggère que de gros dinosaures hadrosauridés auraient pu habiter une grande masse terrestre insulaire polaire pendant le Crétacé tardif, où ils auraient évolué à l’année, étant incapables de migrer vers les régions plus au sud pendant l’hiver. Il est possible que les dinosaures herbivores résidents se soient nourris de conifères non décidus ainsi que d’autres tiges ou brindilles ligneuses pendant les longs mois sombres de l’hiver, lorsque la plupart des espèces végétales décidues avaient perdu leurs feuilles.

    The dinosaur tracks of Tyrants Aisle: An Upper Cretaceous ichnofauna from Unit 4 of the Wapiti Formation (upper Campanian), Alberta, Canada

    Get PDF
    The Wapiti Formation of northwest Alberta and northeast British Columbia, Canada, preserves an Upper Cretaceous terrestrial vertebrate fauna that is latitudinally situated between those documented further north in Alaska and those from southern Alberta and the contiguous U.S.A. Therefore, the Wapiti Formation is important for identifying broad patterns in vertebrate ecology, diversity, and distribution across Laramidia during the latest Cretaceous. Tracksites are especially useful as they provide a range of palaeoecological, palaeoenvironmental, and behavioural data that are complementary to the skeletal record. Here, we describe the Tyrants Aisle locality, the largest in-situ tracksite known from the Wapiti Formation. The site occurs in the lower part of Unit 4 of the formation (~72.5 Ma, upper Campanian), exposed along the southern bank of the Redwillow River. More than 100 tracks are documented across at least three distinct track-bearing layers, which were deposited on an alluvial floodplain. Hadrosaurid tracks are most abundant, and are referable to Hadrosauropodus based on track width exceeding track length, broad digits, and rounded or bilobed heel margins. We suggest the hadrosaurid trackmaker was Edmontosaurus regalis based on stratigraphic context. Tyrannosaurids, probable troodontids, possible ornithomimids, and possible azhdarchid pterosaurs represent minor but notable elements of the ichnofauna, as the latter is unknown from skeletal remains within the Wapiti Formation, and all others are poorly represented. Possible social behaviour is inferred for some of the hadrosaurid and small theropod-like trackmakers based on trackway alignment, suitable spacing and consistent preservation. On a broad taxonomic level (i.e., family or above), ichnofaunal compositions indicate that hadrosaurids were palaeoecologically dominant across Laramidia during the late Campanian within both high-and low-latitude deposits, although the role of depositional environment requires further testing

    Small Theropod Teeth from the Late Cretaceous of the San Juan Basin, Northwestern New Mexico and Their Implications for Understanding Latest Cretaceous Dinosaur Evolution

    Get PDF
    Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction

    Date/Publication 2012-03-30 07:54:11

    No full text
    Description A set of analytical tools useful in analysing ecological and geographical data sets, both ancient and modern. The package includes functions for estimating species richness (Chao 1 and 2, ACE, ICE, Jacknife), shared species/beta diversity, species area curves and geographic distances and areas

    A comparison of clustering methods for biogeography with fossil datasets

    No full text
    Cluster analysis is one of the most commonly used methods in palaeoecological studies, particularly in studies investigating biogeographic patterns. Although a number of different clustering methods are widely used, the approach and underlying assumptions of many of these methods are quite different. For example, methods may be hierarchical or non-hierarchical in their approaches, and may use Euclidean distance or non-Euclidean indices to cluster the data. In order to assess the effectiveness of the different clustering methods as compared to one another, a simulation was designed that could assess each method over a range of both cluster distinctiveness and sampling intensity. Additionally, a non-hierarchical, non-Euclidean, iterative clustering method implemented in the R Statistical Language is described. This method, Non-Euclidean Relational Clustering (NERC), creates distinct clusters by dividing the data set in order to maximize the average similarity within each cluster, identifying clusters in which each data point is on average more similar to those within its own group than to those in any other group. While all the methods performed well with clearly differentiated and well-sampled datasets, when data are less than ideal the linkage methods perform poorly compared to non-Euclidean based k-means and the NERC method. Based on this analysis, Unweighted Pair Group Method with Arithmetic Mean and neighbor joining methods are less reliable with incomplete datasets like those found in palaeobiological analyses, and the k-means and NERC methods should be used in their place

    Data from: The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity

    No full text
    During the Mesozoic (242–66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species–area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity

    Supplementary_materials_S2

    No full text
    Complete R code for all analyses and figures used in the paper

    Supplementary_materials_S3

    No full text
    RData file containing polygon data for all land regions through the Mesozoic. Use in conjunction with R code contained in Supplementary_materials_S2.R in this same repository

    Supplementary Methods from The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity

    No full text
    During the Mesozoic (245–66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both due to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species–area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic due to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, though these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity

    Small sample sizes in the study of ontogenetic allometry; implications for palaeobiology

    No full text
    Quantitative morphometric analyses, particularly ontogenetic allometry, are common methods used in quantifying shape, and changes therein, in both extinct and extant organisms. Due to incompleteness and the potential for restricted sample sizes in the fossil record, palaeobiological analyses of allometry may encounter higher rates of error. Differences in sample size between fossil and extant studies and any resulting effects on allometric analyses have not been thoroughly investigated, and a logical lower threshold to sample size is not clear. Here we show that studies based on fossil datasets have smaller sample sizes than those based on extant taxa. A similar pattern between vertebrates and invertebrates indicates this is not a problem unique to either group, but common to both. We investigate the relationship between sample size, ontogenetic allometric relationship and statistical power using an empirical dataset of skull measurements of modern Alligator mississippiensis. Across a variety of subsampling techniques, used to simulate different taphonomic and/or sampling effects, smaller sample sizes gave less reliable and more variable results, often with the result that allometric relationships will go undetected due to Type II error (failure to reject the null hypothesis). This may result in a false impression of fewer instances of positive/negative allometric growth in fossils compared to living organisms. These limitations are not restricted to fossil data and are equally applicable to allometric analyses of rare extant taxa. No mathematically derived minimum sample size for ontogenetic allometric studies is found; rather results of isometry (but not necessarily allometry) should not be viewed with confidence at small sample sizes
    corecore