59 research outputs found
A simple principle concerning the robustness of protein complex activity to changes in gene expression
<p>Abstract</p> <p>Background</p> <p>The functions of a eukaryotic cell are largely performed by multi-subunit protein complexes that act as molecular machines or information processing modules in cellular networks. An important problem in systems biology is to understand how, in general, these molecular machines respond to perturbations.</p> <p>Results</p> <p>In yeast, genes that inhibit growth when their expression is reduced are strongly enriched amongst the subunits of multi-subunit protein complexes. This applies to both the core and peripheral subunits of protein complexes, and the subunits of each complex normally have the same loss-of-function phenotypes. In contrast, genes that inhibit growth when their expression is increased are not enriched amongst the core or peripheral subunits of protein complexes, and the behaviour of one subunit of a complex is not predictive for the other subunits with respect to over-expression phenotypes.</p> <p>Conclusion</p> <p>We propose the principle that the overall activity of a protein complex is in general robust to an increase, but not to a decrease in the expression of its subunits. This means that whereas phenotypes resulting from a decrease in gene expression can be predicted because they cluster on networks of protein complexes, over-expression phenotypes cannot be predicted in this way. We discuss the implications of these findings for understanding how cells are regulated, how they evolve, and how genetic perturbations connect to disease in humans.</p
Recommended from our members
Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates. Results Here we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies. Conclusion A core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This 're-wiring' of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these 'hard-wired' core gene regulatory networks that specify the development of each alternative animal body plan.Published versio
The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes
Altres ajuts: MICINN grant BFU2011-30246, Ramon y Cajal grant RYC-2010-07114, European Commission Framework 7 European Re-integration grant PERG08-GA-2010-276741, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Danish Council for Independent Research (Technology and Production Sciences), The Lundbeck Foundation, Fundación Salud 2000 SERONO 13-01 i European Commission training network grant (FP7-PEOPLE-2011-ITN289880)Abstract.At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.© 2015 Pantano et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society
The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%-4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome
Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses
Altres ajuts: Universitat de Barcelona (ACESB14) i AGAURThe cornification of keratinocytes on the surface of skin and oral epithelia is associated with the degradation of nuclear DNA. The endonuclease DNase1L2 and the exonuclease Trex2 are expressed specifically in cornifying keratinocytes. Deletion of DNase1L2 causes retention of nuclear DNA in the tongue epithelium but not in the skin. Here we report that lack of Trex2 results in the accumulation of DNA fragments in the cytoplasm of cornifying lingual keratinocytes and co-deletion of DNase1L2 and Trex2 causes massive accumulation of DNA fragments throughout the cornified layers of the tongue epithelium. By contrast, cornification-associated DNA breakdown was not compromised in the epidermis. Aberrant retention of DNA in the tongue epithelium was associated neither with enhanced expression of DNA-driven response genes, such as Ifnb, Irf7 and Cxcl10, nor with inflammation. Of note, the expression of Tlr9, Aim2 and Tmem173, key DNA sensor genes, was markedly lower in keratinocytes and keratinocyte-built tissues than in macrophages and immune tissues, and DNA-driven response genes were not induced by introduction of DNA in keratinocytes. Altogether, our results indicate that DNase1L2 and Trex2 cooperate in the breakdown and degradation of DNA during cornification of lingual keratinocytes and aberrant DNA retention is tolerated in the oral epithelium
Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses
The cornification of keratinocytes on the surface of skin and oral epithelia is associated with the degradation of nuclear DNA. The endonuclease DNase1L2 and the exonuclease Trex2 are expressed specifically in cornifying keratinocytes. Deletion of DNase1L2 causes retention of nuclear DNA in the tongue epithelium but not in the skin. Here we report that lack of Trex2 results in the accumulation of DNA fragments in the cytoplasm of cornifying lingual keratinocytes and co-deletion of DNase1L2 and Trex2 causes massive accumulation of DNA fragments throughout the cornified layers of the tongue epithelium. By contrast, cornification-associated DNA breakdown was not compromised in the epidermis. Aberrant retention of DNA in the tongue epithelium was associated neither with enhanced expression of DNA-driven response genes, such as Ifnb, Irf7 and Cxcl10, nor with inflammation. Of note, the expression of Tlr9, Aim2 and Tmem173, key DNA sensor genes, was markedly lower in keratinocytes and keratinocyte-built tissues than in macrophages and immune tissues, and DNA-driven response genes were not induced by introduction of DNA in keratinocytes. Altogether, our results indicate that DNase1L2 and Trex2 cooperate in the breakdown and degradation of DNA during cornification of lingual keratinocytes and aberrant DNA retention is tolerated in the oral epithelium
Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity.
This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.cell.2015.12.025More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.This work was supported by funding from the Max-Planck Society, ERC (ERC-StG-281641), DFG (SFB992 âMedEpâ; SFB 1052 âObesityMechanismsâ), EU_FP7 (NoE âEpigenesysâ; âBeta-JUDOâ n° 279153), BMBF (DEEP), MRC (Metabolic Disease Unit - APC, SOR, GSHY, MRC_MC_UU_12012/1), Wellcome Trust (SOR, 095515/Z/11/Z) and the German Research Council (DFG) for the Clinical Research Center "Obesity Mechanisms" CRC1052/1 C05 and the Federal Ministry of Education and Research, Germany, FKZ, 01EO1001 (Integrated Research and Treatment Center (IFB) Adiposity Diseases
Chromatin Organization in Sperm May Be the Major Functional Consequence of Base Composition Variation in the Human Genome
Chromatin in sperm is different from that in other cells, with most of the genome packaged by protamines not nucleosomes. Nucleosomes are, however, retained at some genomic sites, where they have the potential to transmit paternal epigenetic information. It is not understood how this retention is specified. Here we show that base composition is the major determinant of nucleosome retention in human sperm, predicting retention very well in both genic and non-genic regions of the genome. The retention of nucleosomes at GC-rich sequences with high intrinsic nucleosome affinity accounts for the previously reported retention at transcription start sites and at genes that regulate development. It also means that nucleosomes are retained at the start sites of most housekeeping genes. We also report a striking link between the retention of nucleosomes in sperm and the establishment of DNA methylation-free regions in the early embryo. Taken together, this suggests that paternal nucleosome transmission may facilitate robust gene regulation in the early embryo. We propose that chromatin organization in the male germline, rather than in somatic cells, is the major functional consequence of fine-scale base composition variation in the human genome. The selective pressure driving base composition evolution in mammals could, therefore, be the need to transmit paternal epigenetic information to the zygote
Human genes with CpG island promoters have a distinct transcription-associated chromatin organization
Background: More than 50% of human genes initiate transcription from CpG dinucleotide-rich regions referred to as CpG islands. These genes show differences in their patterns of transcription initiation, and have been reported to have higher levels of some activation-associated chromatin modifications. Results: Here we report that genes with CpG island promoters have a characteristic transcription-associated chromatin organization. This signature includes high levels of the transcription elongation-associated histone modifications H4K20me1, H2BK5me1 and H3K79me1/2/3 in the 5' end of the gene, depletion of the activation marks H2AK5ac, H3K14ac and H3K23ac immediately downstream of the transcription start site (TSS), and characteristic epigenetic asymmetries around the TSS. The chromosome organization factor CTCF may be bound upstream of RNA polymerase in most active CpG island promoters, and an unstable nucleosome at the TSS may be specifically marked by H4K20me3, the first example of such a modification. H3K36 monomethylation is only detected as enriched in the bodies of active genes that have CpG island promoters. Finally, as expression levels increase, peak modification levels of the histone methylations H3K9me1, H3K4me1, H3K4me2 and H3K27me1 shift further away from the TSS into the gene body. Conclusions: These results suggest that active genes with CpG island promoters have a distinct step-like series of modified nucleosomes after the TSS. The identity, positioning, shape and relative ordering of transcription-associated histone modifications differ between genes with and without CpG island promoters. This supports a model where chromatin organization reflects not only transcription activity but also the type of promoter in which transcription initiates.TV is funded by MICINN grant BFU2011-30246, Ramon y Cajal grant RYC-2010-07114, European Commission Framework 7 European Re-integration grant PERG08-GA-2010-276741, and by the Institute of Predictive and Personalized Medicine of Cancer. BL is funded by an ERC Starting Grant, ERASysBio+ ERANET, MICINN grant BFU2008-00365, AGAUR, the EMBO Young Investigator Program, European Commission Framework 7 integrated project 4DCellFate, and by the EMBL-CRG Systems Biology Progra
- âŠ